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A B S T R A C T   

Coherent pixel (CP) selection is an important step in the processing chain of time series InSAR analysis. In this 
research, we propose a light deep learning framework, i.e., a dual-channel one-Dimensional Convolution Neural 
Network (1-D CNN) to select CPs. The 1-D CNN has simple input: SAR amplitude and interferogram coherence, 
and can be trained with CP samples generated by traditional thresholding method. In an experiment based on 
Sentinel-1 temporal images in Tianjin, China, the 1-D CNN substantially outperforms the thresholding method 
and the StaMPS method in terms of the amount and the quality of selected CPs. Additionally, a new measure is 
proposed to quantify CP quality, which is very useful when other reference data is unavailable. The proposed 1-D 
CNN framework on CP selection is reliable and fast, and of great significance in developing automatic time-series 
InSAR processing system.   

1. Introduction 

Time series InSAR (TS-InSAR) techniques, including persistent scat
terer InSAR (PS-InSAR) (Ferretti et al., 2000, 2001) and small baseline 
subset (SBAS) InSAR (Berardino et al., 2002), have been widely used to 
monitor ground deformation. Coherent pixels (CPs) related to perma
nent scatterer (PS) or distributed scatterer (DS) (Ferretti et al., 2011) 
exhibiting consistent scattering response over time are the basis for time 
series InSAR analysis. As an important step in TS-InSAR processing 
chain, CP selection aims to extract true coherent pixels as dense as 
possible, over which geophysical parameters such as deformation, DEM 
error and atmosphere, can be retrieved accurately. 

A PS pixel, usually containing dominant scatterers within the reso
lution cell, is characterized by high coherence values in all interfero
grams and stable and high amplitude values in the time series SAR 
images (Ferretti et al., 2001). On the other side, a DS pixel, which 
doesn’t contain dominant scatterers within the resolution cell, still has 
moderate coherence in some interferograms. Therefore, CPs can be 
detected by simply setting thresholds to specific parameters related to 
radar reflectivity, such as the amplitude dispersion (Ferretti et al., 
2001), and/or parameters related to coherence behavior, such as the 
mean coherence of available interferograms (Mora et al., 2003) or the 

coherence of each interferogram (Berardino et al., 2002). Wang et al. 
(2018) proposed a novel coherence-based method for CP selection. In 
this method, a pixel is recognized as a CP if the interferograms in which 
the coherence of the pixel is above a threshold forms a connected 
network involving all the SAR images. In comparison with the methods 
of checking the mean coherence or each interferogram coherence, this 
method is more relevant to the reliability of deformation retrieval, 
because the coefficient matrix in this method is full rank, thus defor
mation phase can be estimated under the least square sense, without 
taking the risk of solving a under-determined system. 

Apart from these straightforward parameters, the StaMPS (Stanford 
Method for PS) (Hooper et al., 2004) uses a more complicated param
eter, the temporal coherence, to set threshold values for CP selection. 
The temporal Coherence represents a measure of the variation of phase 
noise over the used interferograms. 

γT =
1
M

⃒
⃒
⃒
⃒
⃒

∑M

i=1
eJ⋅ϕn,i

⃒
⃒
⃒
⃒
⃒

(1)  

Where M is the number of used interferograms, and ϕn,i denotes the 
noise phase due to variability in scattering, thermal noise, coregistration 
errors and uncertainty in the position of the phase center (Hooper et al., 
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2007) of a pixel in the ith interferogram. For a CP, the noise should be 
small and presents a random behavior (Zhao and Mallorqui, 2019), thus 
a large value of the temporal coherence is expected. However, in order 
to obtain a reliable estimate on noise phase, the deterministic phase 
components, including phases related to deformation, atmospheric ar
tifacts, DEM error and orbit uncertainty, must be estimated and sub
tracted from the interferometric phase. Therefore, CP selection with 
StaMPS involves large computation cost. 

Besides the above-mentioned pixel based methods, another large 
group of CP selection methods are segment based, which are designed to 
exploit the phase information of all statistically homogeneous pixels 
(SHP) in a neighborhood of a DS pixel. The rationale of this group of 
methods is to retrieve the parameters of interest, such as deformation 
velocity, elevation, and deformation time series, more accurately by 
processing the interferometric phase of many homogeneous pixels in a 
segment, rather than the phase of each DS pixel alone, as the phase of 
one DS pixel is noisy due to the effect of decorrelations (Ferretti et al., 
2011). Examples of this kind of CP selection methods are: the SqueeSAR 
(Ferretti et al., 2011), the methods proposed by Wang et al. (2012), 
Jiang et al. (2015) and the CAESAR (Fornaro et al., 2015). This group of 
CP selection methods typically consist of two consecutive processing 
steps. The first step is to identify the SHP within a specified neighbor
hood of a pixel, and a pixel with the number of SHP above a threshold is 
recognized as a DS pixel. In the second step, the phase of every extracted 
DS is reconstructed or filtered by means of the phases of its SHP with 
different algorithms, such as phase triangulation (Ferretti et al., 2011), 
the eigenvalue decomposition of covariance matrix (Fornaro et al., 
2015) or the temporal coherence estimation (Zhao and Mallorqui, 
2019). Thus, the original phase noise in DS pixels can be largely miti
gated and the parameters of interest can be retrieved more reliably from 
the filtered phases. Consequently, this group of CP selection methods is 
also computationally expensive. 

As a summary, the CP selection methods by thresholding straight
forward parameters are computationally efficient. But these methods are 
very sensitive to the threshold values, and determining appropriate 
threshold values might be difficult and subjective, especially when the 
scene coverage is large. A strict threshold value tends to discard true 
CPs, thus lowers the measurement density, while a loose threshold value 
can result in large commission errors. For those complicated CP selec
tion methods, including the StaMPS and the DS exploitation methods, 
determination of threshold values is not a problem as the threshold 
value is either a derivative, like the threshold value to the temporal 
coherence to identify a CP in StaMPS, or can adopt an empirical value, 
like the threshold value to the number of SHP to confirm a DS pixel in 
SqueeSAR. However high computation cost remains a problem for those 
methods. For example, the time required by CP selection with StaMPS 

may vary from hours to days depending on number of candidate pixels 
and the size of the dataset as reported by Tiwari et al. (2020). Moreover, 
high computation cost could become unacceptable in specific circum
stances such as emergency responses and regular monitoring activities. 
Therefore, reliable and computationally fast methods of CP selection 
need to be developed in order to meet the challenges imposed by 
deformation monitoring applications concerning large data volume, 
wide area and urgent time requirements. 

During the last decade, neural networks technology in the name of 
deep learning, with strong ability in automatically learning high-level 
features hidden in the training samples, have been successfully used in 
image classification (Krizhevsky et al., 2012) and object detection 
(Girshick et al., 2014). CP selection can also be regarded as a task of 
classifying stable scattering pixels from time series SAR images, thus 
suitable for deep learning-based solutions. Recently, Tiwari et al. (2020) 
reported a study on CP selection in TS-InSAR with deep learning 
methods. In this study, a two-dimensional (2-D) convolution neural 
network (CNN) architecture and a convolutional long short term mem
ory network (CLSTM) architecture were proposed to learn spatial and 
spatio-temporal features of CPs respectively. The training dataset used 
in Tiwari et al. (2020) is composed of around 10,000 image (interfero
metric phase) blocks of size 100 × 100 with each pixel labelled as a CP or 
a non-CP by referring to the CP selection result from StaMPS. However, 
the adoption of 2-D convolution in Tiwari et al. (2020) is open to dis
cussion. CPs are spatially discrete, and the occurrence of a CP is inde
pendent of the existence of other CPs in its neighborhood. In other 
words, spatial context has little implication for identifying a CP. The 
finding in Tiwari et al. (2020) that the CLSTM architecture can achieve 
better accuracy and density than the CNN architecture itself also implies 
that the temporal features play more important roles than the spatial 
features in CP identification. Another drawback of using 2-D convolu
tions is the problem of class imbalance existed in training samples: the 
majority (i.e., above 95 %) of pixels within a training image block on 
most occasions are non-CPs (Tiwari et al., 2020). As a result, the network 
will be trained to tend to label a CP as a non-CP, thus the trained network 
will increase the false negative rate. Although the class imbalance 
problem has been tackled in the research by introducing the f1-score as 
the loss function and giving much higher weight to CP class than non-CP 
class, these treatments are not entirely effective according to Johnson 
and Khoshgoftaar (2019). 

In this research, we propose to use one-dimensional CNN (1-D CNN) 
for CP selection in TS-InSAR. The 1-D CNN was developed for time series 
signal processing in 2015 (Kiranyaz et al., 2015). In comparison with 2- 
D CNN, 1-D CNN has fewer network parameters, thus is computationally 
more efficient and requires a smaller number of training samples to train 
the network. Moreover, there is not the problem of class imbalance in 

Fig. 1. Diagram of the dual-channel 1-D CNN framework.  
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training samples, because training samples are pixels, rather than image 
blocks, and the proportion of positive (CP) and negative (non-CP) 
samples is under control. 

Generally, the information of time series single-polarization SAR 
images is fully represented by the Hermitian data covariance matrix. The 
diagonal elements of the covariance matrix are the intensity (square of 
amplitude) of the time series SAR images, and the off-diagonal elements 
are related to the complex coherence of all possible interferograms. 
Therefore, a dual-channel 1-D CNN with one channel processing the SAR 
amplitude and the other processing the coherence of interferograms is 
adopted. 

The remainder of this paper is structured as follows. The proposed 
dual-channel 1-D CNN is detailed in section 2. The section 3 is dedicated 
to an experiment with Sentinel-1A (S-1A) images. CP extraction results 
from the proposed 1-D CNN, StaMPS, and thresholding methods are 
analyzed. Also, a parameter used to measure the quality of CPs is 
introduced. CPs from the three methods are compared in terms of den
sity, the quality measure, accuracy of the derived deformation and the 
computation time. Finally, discussion and conclusion are presented in 
section 4. 

2. Proposed neural network framework 

The proposed network consists of a feature representation compo
nent and a feature classification component (Fig. 1). The feature rep
resentation component has two channels responsible for extracting high 
level features from the input amplitude and the coherence vectors 
respectively. The methodology points of the proposed network can be 
presented schematically as follows:  

(1) For each pixel in a stack of co-registered SAR images acquired at 
N time points, there are a corresponding amplitude vector, i.e., 
A = [a1, a2, a3,⋯, aN] and a coherence vector, i.e.,C = [c1, c2, c3,

⋯, cM] , which form the input vectors of the pixel.  
(2) The input amplitude vector and coherence vector are processed 

by the two channels in the feature representation component 
respectively. In each channel, a network formed by cascading two 
1-D convolution blocks is used to extract high-level temporal 
features of the input vector, which are output into a feature 
matrix. 

(3) The extracted feature matrix output from each of the two chan
nels is reorganized (flattened) as a feature vector. Then the two 
vectors are concatenated as one feature vector. 

(4) The concatenated feature vector is fed into the feature classifi
cation component, i.e., the 3-layer multi-layer perceptron (MLP), 
to classify the pixel as a CP or a non-CP. 

2.1. 1-D convolution block 

A 1-D convolution block is the fundamental unit of the feature rep
resentation component. Every 1-D convolution block has two 1-D 
convolution layers (Fig. 2), each consisting of a few convolution ker
nels to extract multi-dimensional features from the input data, followed 
by a max-pooling layer to eliminate the redundancy in the extracted 
features. 

In the first 1-D convolution layer, for a given kernel with length L, a 
N-sized input vector, which is either the SAR amplitude vector or the 
coherence vector, will generate a (N-L + 1)-sized output vector if the 
stride equals to 1. The convolution operation can be expressed as: 

u = f (z) = f (W1⋅X + b) = f

(
∑L

i=1
w1, i⋅xi + b

)

(2)  

where X denotes the input vector, w1, i and b denote the weight and the 
bias specific to the kernel, f(•) is the ReLU activation function. 

Given F kernels, F different feature vectors will be obtained. These 
feature vectors are then stacked as column vectors into a feature matrix 
U with N-L + 1 rows by F columns (see Fig. 2). In the second 1-D 
convolution layer, the 1-D convolution process is conducted similarly, 
and can be formulated as: 

u
′

= f (z
′

) = f (〈W2, U〉 + b ) = f

(
∑L

i=1

∑F

j=1
w2,i,j⋅ui,j + b

)

(3)  

where W2 denotes the weight matrix, and 〈W2, U〉 stands for the inner 
product of two matrixes. The output feature matrix U’ from the second 1- 
D convolution will have N-2L + 2 rows and F columns. 

After that, a non-overlapping 1-D max pooling with a kernel length of 
2 is applied to each column vector of the output feature matrix to extract 
the more prominent from every two adjacent features: 

v = max{u′

(2i, j), u′

(2i+ 1, j) }, i ∈ [1, P], j ∈ [1, F] (4)  

whereP = [(N − 2L + 2)/2 ], and [⋅] means taking the integer. The max 
pooling operation aims to eliminate the redundancy in the feature vector 
by reducing its dimensionality. 

2.2. MLP 

The MLP is composed of three fully connected layers having 60, 30 
and 2 neurons respectively. Similar to the convolution, the operation 
associated with every neuron can be expressed as: 

z = f (V⋅X + b) (5) 

Fig. 2. Diagram of a 1-D convolution block.  
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where V, X and b denote the weight vector, the combined feature vector 
and the bias respectively. The activation function f(⋅) for the first two 
layers is the ReLU function, and is the SoftMax function for the third 
layer which calculates the probability of the input pixel being a CP and a 
non-CP. 

2.3. Determination of main hyperparameters 

The number of convolution kernels F and the length of each kernel L 
are two important hyperparameters. The number of convolution kernels 
corresponds to the dimensionality of the feature vector extracted by the 
convolution operation and the length of the kernel tells how many 
consecutive elements within the input vector are used to explore the 
temporal features. The values of F and L are determined through trial in 
the training stage. Especially, the number of convolution kernels F and 
the length of each kernel L have been tested by taking the values of {10, 
20, 30, 40, 50}, and {2, 3, 4, 5} respectively. It turns out that the CP 

selection result with F = 30, and L = 3 has best accuracy. This finding is 
explainable by the characteristics of the input data. The dimensionality 
of the extracted feature vector is related to the number of SAR images 
used. 29 acquisitions of S-1A within the year of 2018 are used for CP 
selection in the experiment. Therefore, 30 is an appropriate value for the 
hyperparameter F. On the other side, the value of kernel length L is 
related to the way the interferograms are formed. How to form the in
terferograms is an important step in time series InSAR analysis. In order 
to improve the generalization level of the proposed network, the in
terferograms are formed according to a fixed temporal baseline rule 
(Fig. 3): every SAR image is connected to three temporally closest im
ages to form interferograms. That is, 3 × N-6 interferograms will be 
formed from N temporal SAR images. Therefore, the temporal features 
of the input coherence vector could be well investigated based on the 
coherence values of every 3 consecutive interferograms. 

Fig. 3. Illustration of the temporal baseline configuration of interferogram generation rule. Every image is connected to three consecutive images to form 
interferograms. 

Fig. 4. Geocoded mean amplitude from two neighboring S-1A stacks over Tianjin, China with the inset showing its location in China. The training area and the test 
area are delineated by red rectangles. 
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3. Experiment and analysis 

The test site is in Tianjin, China, and covered by two neighboring 
tracks (path 142, path 69) of S-1A Interferometric Wide-swath (IW) 
mode SAR images (Fig. 4). 29 images are collected from path 142 from 3 
January to 29 December of 2018 with two acquisitions missing on 16 
March and 30 October. 30 images are collected from path 69 from 10 
January to 24 December of 2018 with an exact 12-day interval. Since the 
training data and the test data are from different paths, we remove the 
image acquired on March 11 from the stack of path 69, so that the 
number of SAR images over each track is 29. 

According to the small temporal baseline configuration (Fig. 3), 81 
interferograms are formed from 29 S-1A images over both tracks. 2 × 8 
multi-looking is employed in the interferogram generation to suppress 
the speckle noise. The amplitude data is generated through three steps: 
1) the imaginary and the real parts of the original single look complex 
data is calibrated respectively, and the 1-look amplitude is generated; 2) 
averaging the 1-look amplitudes in a 2 × 8 window to obtain the multi- 
looked amplitude; 3) each of the multi-looked amplitude is normalized 
by dividing the mean of the 29 amplitudes. The training area and the test 
area contain 3000 × 3000 and 2088 × 2707 multi-looked pixels 
respectively (Fig. 4.) The reason for choosing a image subset of 3000 ×
3000 pixels as the training area is that this size of coverage is big enough 
to generate adequate number of training samples for the network, as the 
proposed dual-channel 1-D CNN has a slight structure with the amount 
of network parameters around 58,000. As for the test area, there is no 
limitation to the size of test area. In fact, the whole scene coverage of the 

track 69 can be used as the test area. The reason for choosing the 2088 ×
2707 sized test area is that the leveling measurements used for valida
tion of InSAR-derived deformation results are all within this area. 
Further, it will take longer time for the StaMPS to complete CP selection 
if a test area with larger size is adopted. 

Having a large number of training samples in advance is a prereq
uisite for deep learning approaches. Usually generating the training 
samples is difficult and time-consuming. This is especially true when we 
try to distinguish a lot of CPs from SAR images through visual inter
pretation. Here we extract CP training samples from the training area 
with the thresholding method. Threshold values to the two parameters: 
mean coherence of the 81 interferograms and mean amplitude of the 29 
S-1A images, are manually determined by trial. The final thresholding 
rule for extracting CP training samples are: 

(γs > 0.8) or [(γs > 0.71) and (A > 1.1) ] (6)  

whereγs, A are the mean coherence and the mean amplitude respec
tively. This thresholding rule is intended to extract pixels with very high 
coherence or medium-high coherence plus medium-high amplitude. 

Non-CP samples are selected by thresholding the same parameters 
inversely. Eventually, 277,389 CP samples and 737,906 non-CP samples 
are extracted. For every training sample, there is a corresponding vector 
composed of an amplitude sequence (29 elements), a coherence 
sequence (81 elements), and a label indicating the sample being a CP 
(label value = 1) or a non-CP (label value = 0). 

The 1,015,295 samples are divided into two parts: 70 % of the CP and 
non-CP samples used for network training and the rest for validation. 
The 710,707 training samples are input into the proposed network with 
a mini batch of 10,000 samples per epoch. The network biases are 
initialized as zero, and the weights are initialized by the He normal 
initializer (He et al., 2015). The dropout rate is set to 0.5. At the last 
stage, the cross-entropy loss function and the Adam optimizer (Kingma 
and Ba, 2015) with learning rate of 0.001 are adopted to update the 
network biases and weights. 

Table 1 
The number of CPs selected by the three methods.  

Number of CPs Thresholding StaMPS 1-D CNN 

Thresholding 354,666 169,050 354,522 
StaMPS  385,538 207,224 
1-D CNN   452,040  

Fig. 5. CP selection result of the three methods over a subset marked by the blue rectangle in Fig. 4. The enlarged views of CPs overlaid on the SAR amplitude over a 
large building and a rural residential area delineated by the green and the brown rectangles in (a)- (d) are shown in (e) and (f). The top-panel images in (e) and (f) are 
optical images. 
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The trained network is then applied to the test data of path 69, and 
452,040 CPs are extracted by the network. As a comparison, the same 
thresholding rule and the StaMPS method are also applied to the test 
area. The numbers of CPs selected by the three methods are listed in 
Table 1 with the diagonal entries recording the number of CPs selected 
by each of the three methods, and the off-diagonal entries recording the 
number of common CPs selected by two of the three methods. The CP 
selection results over a subset of the test area (marked by the blue 
rectangle in Fig. 4) are shown in Fig. 5. The enlarged views of CPs 
selected by the three methods over a large building and a rural resi
dential area are shown in Fig. 5(e) and (f). More CPs are extracted by the 
thresholding and the 1-D CNN methods over the building than the 
StaMPS (Fig. 5(e)), while more CPs are selected by the StaMPS and the 1- 
D CNN than the thresholding over the rural residential area (Fig. 5(f)). 
This will be discussed in more detail in next sub-section. 

3.1. CP density 

From Table 1, the proposed 1-D CNN has selected the largest number 
of CPs, e.g., 27 % and 17 % more CPs than the thresholding and the 
StaMPS methods respectively. Especially, since the 1-D CNN is trained 
with training samples generated by the thresholding method, the trained 
network has selected nearly all the CPs (354,522 out of 354,666, or 
99.96 %) extracted by the thresholding method over the test area. This 
demonstrates that the 1-D CNN has learned well the features represented 
by the thresholding rules. We also notice that the percentage of common 
CPs between the StaMPS and the 1-D CNN or the thresholding method is 
less than 50 %, which means that the StaMPS-selected CPs largely don’t 
coincide with those extracted by the other two methods. This difference 
is evident from the distribution of the mean coherence as shown in 
Fig. 6. The threshold value for the mean coherence in the thresholding 
method is 0.71. The 1-D CNN has learned this feature of high coherence 
in the time series interferograms. Therefore, the mean coherence of the 
CPs selected by the 1-D CNN also presents large values, i.e., all above 

0.63. While the CP selection in the StaMPS algorithm has nothing to do 
with the spatial coherence, thus the mean coherence of CPs selected by 
the StaMPS spans a wide range of [0.33, 0.99] and inherently has a 
Gaussian distribution according to the central limit theorem. From the 
enlarged views of Fig. 5 (e) and 5 (f), the thresholding and the 1-D CNN 
methods have selected much more CPs than StaMPS over the large 
building where many PS pixels with strong and stable backscattering 
exist. While over the rural residential area where the SAR backscattering 
is not very strong but remains relatively stable like DS pixels, StaMPS has 
selected more CPs than thresholding. This has confirmed one of the 
advantages of the StaMPS: it is able to achieve denser measurements 
than amplitude-based PS, especially over non-urban area, through 
identifying both PS and DS (Osmanoğlu et al., 2016). Nevertheless, the 
1-D CNN has selected 66,502, or 17 % more CPs than the StaMPS over 
the whole test area. 

3.2. CP quality 

Besides density, another significant concern is the quality of the CPs. 
Generally, one can evaluate the quality of CPs by comparing the 
deformation derived from these CPs with ground truth. However, the 
reference data used in deformation accuracy evaluation, such as leveling 
or GPS measurements, are often unavailable. 

Here we propose to use the multi-image phase coherence defined by 
Ferretti, et al., (2000) or equivalently the model coherence in Mora, 
et al., (2003) as an alternative to measure CP quality when reference 
data are unavailable. The model coherence is defined over an arc con
necting two neighboring CPs by. 

γi,j =
1
L

⃒
⃒
⃒
⃒
⃒

∑L

k=1
exp
[
j
(
φi,j
k − φi,j

mod el

) ]
⃒
⃒
⃒
⃒
⃒

(7)  

where i, j denotes two neighboring CPs, φi,j
k is the wrapped phase dif

ference over the arc in the kth differential interferogram, φi,j
mod el is the 

model phase associated with deformation and DEM error, and can be 
express as. 

φi,j
mod el =

(
φi
def ,k − φj

def ,k

)
+ aBk⋅

(
hierr − hjerr

)
(8) 

where Bk is the perpendicular baseline of the kth interferogram, hi
err is 

the DEM error at pixel i, φi
def ,k is the deformation phase. In many cases, a 

linear deformation model is assumed, i.e. φi
def ,k = − 4π/λ⋅vi⋅tk with vi 

being the deformation velocity and tk being the temporal baseline. A 
large value of the model coherence, especially close to 1, means that the 
interferometric phase of the two CPs is less affected by noise and the 
phase difference is well fitted by the model, thus the retrieved defor
mation parameters will be reliable. Now we define the model coherence 
for individual CP by taking the average of model coherence of all arcs 
connected to the CP by. 

γi =
〈
γi,j
〉

{j|(i,j)∈Ω }
(9) 

Fig. 6. Histograms of mean coherence of the three sets of CPs.  

Fig. 7. Histograms of CP’s model coherence of the three sets of CPs.  
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where Ω denotes the set of all existing arcs which are usually generated 
by the Delaunay triangulation of selected CPs, 〈⋅〉 means taking the 
average. The model coherence defined by (9) can be used as a measure 
of CP’s quality. 

The histograms of the model coherence of the three sets of CPs are 
plotted in Fig. 7. There is larger portion of CPs in the 1-D CNN set having 
very high model coherence, e.g., in the bins of [0.98, 1], than those in 
the other two sets. Specifically, the ensemble mean of CP’s model 
coherence for the 1-D CNN set, the thresholding set and the StaMPS set 
are 0.9837, 0.9813 and 0.9810 respectively. Therefore, it can be 

concluded that the CPs selected by the 1-D CNN have higher quality than 
those by the thresholding and the StaMPS methods even though 1-D 
CNN detects 17–27 % more CPs than the other two methods. 

3.3. Deformation accuracy validated by leveling measurements 

Fortunately, we have collected a few leveling measurements over the 
test area, which can be used to validate the accuracy of deformation 
result. We have calculated the deformation velocity using the three sets 
of CPs with the algorithm and software presented in Zhang et al. (2016) 
and Zhang et al. (2021). The three results are shown in Fig. 8. To 
compare leveling measurements with InSAR, the InSAR line of sight 
(LOS) deformation velocity has been projected into the vertical direction 
through dividing the LOS velocity by the cosine of SAR viewing angle to 
obtain a subsidence velocity. Note, only 9 out of the collected leveling 
points are used for accuracy validation. The remainder are discarded 
because there are no CPs in the 3 × 3 window centered at those leveling 
points. For every used leveling point, a CP closest to the leveling point is 
located and its subsidence velocity is compared with the leveling mea
surement. The comparison result is listed in Table 2. 

The RMSE of the subsidence velocity derived from 1-D CNN CPs is 
6.3 mm/year, better than those from the StaMPS and the thresholding 
CPs. This result is consistent with the evaluation result of CP’s model 
coherence presented in previous subsection and confirms that the CPs 
derived by the 1-D CNN has the best quality among the three sets of CPs. 

3.4. Computation time 

Computation time is of great significance for time series InSAR 
analysis, especially when the study area is large or there is a strict time 
limitation. The computation times costed by the three methods over the 
test area are listed in Table 3. Data processing was conducted on a 
personal computer equipped with an Intel Xeon Gold 6154 CPU with 
3.00 GHz frequency, a 64 GB RAM, and a 24 GB NVIDA Quadro RTX 
6000 GPU. For the thresholding method, the time used by the operator 
to determine the proper threshold values has not been included. Simi
larly, for the 1-D CNN, the time used to train the network has also not 
been included. Obviously, the thresholding method is the fastest. The 
computation time of StaMPS and the 1-D CNN is 9,692 and 144 s 
respectively when the CPU is utilized, and it is shortened to 8 s if the 1-D 
CNN is executed on the GPU. Therefore, the 1-D CNN is computationally 
much more efficient than StaMPS. The high computation cost is related 
to the complicated procedure of CP selection in StaMPS which has been 
briefed in the introduction section. Therefore, one must bear in mind the 
time cost when applying StaMPS to large areas and/or big data stacks. 

4. Discussion and conclusion 

A deep learning framework, i.e., the dual-channel 1-D CNN, has been 
proposed to select CPs for time series InSAR analysis. The proposed 
network has a light structure characterized by 1-D convolutions. The 
adoption of 1-D rather than 2-D CNN is consistent with the fact that CPs 
are spatially discrete, and the occurrence of a CP is independent of the 
existence of other CPs in its neighborhood. Moreover, in comparison 
with 2-D convolution, the utilization of 1-D convolution can avoid the 
problem of class imbalance, require less training samples to train the 
network, and increase the computation efficiency. The proposed 
network has simple input, i.e., SAR amplitude data and interferogram 
coherence data of a pixel, therefore can be easily integrated into any TS- 
InSAR processing chain. 

The effectiveness and efficiency of the 1-D CNN in CP selection has 
been tested with S-1A time series images. In comparison with the 
thresholding and the StaMPS methods, the 1-D CNN has selected 27 % 
and 17 % more CPs respectively. The CP’s model coherence has been 
proposed as a measure to quantify CP quality, especially when other 
reference data, such as deformation measurements from ground-based 

Fig. 8. Subsidence velocity calculated from the CPs extracted by thresholding 
(a), StaMPS (b) and the 1-D CNN (c), where negative value means ground 
subsidence, and positive value means ground uplift. The positions of 9 leveling 
points are marked by black triangles in (c). 
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methods, are unavailable. The CPs selected by the 1-D CNN has shown 
better quality in terms of CP’s model coherence. Moreover, this quality 
evaluation result has been confirmed through validating the deforma
tion accuracy with leveling measurements. Considering computation 
time, the 1-D CNN is 67 times faster than the StaMPS method when 
implemented on a CPU, and the computation efficiency of the 1-D CNN 
can increase by 17 times if it is run on a GPU. Therefore, it can be 
concluded that the 1-D CNN method is superior in CP selection through 
achieving higher density and better quality of the CPs with competitive 
computation cost. 

Since interferogram coherence is one of the two input data, adoption 
of different methods of coherence estimation will have effects on the 
performance of the proposed 1-D CNN CP selection method. The clas
sical boxcar method, i.e., 2 × 8 multi-looking, is adopted in the current 
implementation of the 1-D CNN. Recently, Mukherjee et al. (2021) 
proposed a CNN-based generative model (namely GenInSAR) to esti
mate coherence, which could slightly improve the accuracy of coherence 
estimation by 4 % and save 50 % of computation time in comparison 
with boxcar. Therefore, integration of the GenInSAR into the framework 
is one of the future tasks to improve the 1-D CNN CP selection method 
further. 

Given the increased interest in obtaining timely deformation over 
large areas, applying high performance computing (HPC) techniques to 
InSAR processing, such as Casu et al. (2014) and Duan et al. (2020), has 
received extensive attention in recent years (Imperatore et al., 2021). In 
order to fully exploit the capability of HPC resources, the InSAR pro
cessing methodology needs to be as automatic as possible. However, CP 
selection is one of the few processing steps still lacking enough auto
mation. In the experiment, the 1-D CNN is trained with samples taken 
from a data stack, and the trained network is directly applied to another 
data stack and performs well. In other words, the generalization ability 
of the proposed 1-D CNN framework has been partly demonstrated. 
Hence, the automation of CP selection could be improved by adopting 
the 1-D CNN method. Of course, more tests are required to investigate 
how large the area a trained 1-D CNN can be successfully applied to. 
Nevertheless, it can be concluded that the proposed 1-D CNN has great 
potential to be incorporated into a HPC-based InSAR processing system 
as a solution to speed up reliable CP selection. 
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