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A B S T R A C T   

Recently, a large number of synthetic aperture radar (SAR) images has been introduced into landslide in-
vestigations with the growing launch of new SAR satellites, such as ALOS/PALSAR-2 and Sentinel-1. Therefore, it is 
appropriate to develop new approaches to retrieve three-dimensional (3D) displacements and long-term (> 10 
years) displacement time series to investigate the spatio-temporal evolution and creep behavior of landslides. In 
this study, a new approach for the estimation of 3D and long-term displacement time series of landslides, based on 
the fusion of C- and L-band SAR observations, is presented. This method is applied to map 3D and long-term dis-
placements (nearly 12 years) of the landslides in Gongjue County, Tibet in China; four sets of SAR images from 
different platforms (i.e., L-band ascending ALOS/PALSAR-1, C-band descending ENVISAT, and C-band ascending 
and descending Sentinel-1 SAR datasets) covering the period of January 2007 to November 2018 were collected 
and exploited. First, the assumption that the landslide moves parallel to its ground surface is used to produce 3D 
displacement rates and time series by fusing ascending and descending Sentinel-1 SAR images, from which the 
optimal sliding direction for each pixel of the slope is well estimated. Then, the long-term displacement time-series 
of the landslide between January 2007 and October 2018 in the estimated sliding direction is recovered by fusing L- 
band ALOS/PALSAR-1 and C-band Sentinel-1 SAR images. In order to fill the time gap of nearly four years between 
ALOS/PALSAR-1 and Sentinel-1 SAR images, the Tikhonov regularization (TR) method is developed to establish 
the observational equation. Moreover, to solve the problem arising from ALOS/PALSAR-1 and Sentinel-1 images 
with different wavelengths, incidence angles and flight directions, the measurements from ALOS/PALSAR-1 and 
Sentinel-1 images are both projected to the estimated optimal sliding direction to achieve a unified displacement 
datum. Our results from ascending and descending Sentinel-1 images suggest that the maximum displacement rates 
of the study area in the vertical and east-west directions from December 2016 to October 2018 were greater than 70 
and 80 mm/year, respectively, and 2D displacement results reveal that the displacement patterns and movement 
characteristics of all the detected landslides are not identical in the study area. Specifically, the 3D displacement 
results successfully revealed the spatiotemporal displacement patterns and movement direction of each block of the 
Shadong landslide, and long-term displacement time series showed for the first time that the maximum cumulative 
displacement exceeds 1.3 m from January 2007 to October 2018. Moreover, the kinematic evolution and possible 
driving factors of landslides were investigated using 2D and 3D and long-term displacement results, coupled with 
hydrological factors and unidimensional constitutive models of the rocks.  
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1. Introduction 

Landslides are a major natural geological hazard in many areas of the 
world. During the last few decades, significant economic losses and fa-
talities have been caused by landslide hazards worldwide (Froude and 
Petley, 2018; Lin and Wang, 2018). More recently, the frequencies and 
magnitudes of landslide occurrences have increased greatly owing to the 
influence of global extreme climate and intensive anthropogenic activ-
ities (Piciullo et al., 2018). The detection and monitoring of unstable 
slopes play a crucial role in the management and early warning of 
geohazards (Dai et al., 2020). Interferometric synthetic aperture radar 
(InSAR) enables the measurement of surface displacement over wide 
areas, with precisions of centimeter to sub-centimeter scales. This has 
been widely used to determine the location of landslides over large areas 
and to monitor the temporal activities of landslides in specific regions 
(Dong et al., 2018; Herrera et al., 2013; Hu et al., 2020; Shi et al., 2019). 
In particular, InSAR-derived displacement information can be used to 
investigate the mechanisms of landslides, including landslide types 
(Burrows et al., 2019), triggering factors (Chen et al., 2020), failure 
modes (Eriksen et al., 2017; Kang et al., 2017), depth and volume esti-
mation, and risk assessment (Hu et al., 2016, 2018; Intrieri et al., 2020). 

However, most related studies (Hu et al., 2016; Shi et al., 2020; 
Wasowski and Pisano, 2020) have characterized such landslide dis-
placements only in the one-dimensional line-of-sight (LOS) direction, 
owing to the limitations of the SAR imaging geometry and single SAR 
platform. As a consequence, several challenges have arisen for detailed 
landslide investigations for the following reasons: (1) it is impossible to 
map landslide movement orthogonal to the LOS direction (Eriksen et al., 
2017), thus causing the omissions of that direction for landslide detec-
tion; (2) it is difficult to analyze the dynamics and mechanisms of 
landslide displacement in complex situations (Samsonov et al., 2020); 
(3) it is inaccurate to map the boundary of landslides and to invert the 
depth and volume of unstable slopes. In contrast, spatio-temporal 
three-dimensional (3D) displacements can provide insights on the 
landslide mechanisms, which can particularly benefit landslide fore-
casting and risk management (Hu et al., 2018, 2019). To date, different 
strategies have been explored to retrieve 3D surface displacements from 
InSAR observations (Wright et al., 2004; Raucoules et al., 2013; Hu 
et al., 2014a; Wang and Jonsson, 2015); these strategies are typically 
used to measure large-gradient displacement caused by geomorpho-
logical processes such as glacier movement (Hu et al., 2014b), 
fast-moving landslides (Li et al., 2019; Raucoules et al., 2013; Shi et al., 
2018), volcanic activity (Jo et al., 2017; Schaefer et al., 2019), and 
earthquakes (He et al., 2019). However, there are few studies on the 3D 
displacement estimation of slow-moving landslides (Sun et al., 2016; 
Eriksen et al., 2017; Ao et al., 2019), particularly for 3D time-series 
displacement estimation. 

In general, landslides experience three stages from initiation to 
failure, including primary creep, steady-state creep, and accelerating 
creep (Aydan et al., 2014; Intrieri et al., 2019); the entire process can last 
from months to several decades. It is of great significance to investigate 
the kinematic evolution and creep behavior of landslides to assess the 
long-term stability of slope and forecast the time of its failure (Aydan 
et al., 2014). Therefore, it is necessary to recover the long-term (i.e., 
longer than 10 years) displacement time series of some known specific 
landslides. However, different SAR satellites operate at different periods 
with distinctive imaging geometries (i.e., incidence angle and flight 
direction) and wavelengths. Thus, it is necessary to develop a new InSAR 
approach to retrieve long-term displacement time series of landslides by 
fusing multi-platform SAR observations. To this end, there are two 
challenging issues that need to be addressed: the first is to link SAR 
acquisitions from different platforms without overlap in the time 
domain, and the second is to determine the optimal movement direction 
of the landslide to which the LOS measurements from different SAR 
platforms can be transformed. Several researchers have explored the 
first issue in terms of vertical land subsidence monitoring; for example, 

Pepe et al. (2016a) used a time-dependent geotechnical model to obtain 
preliminary information to realize the combination of ENVISAT and 
COSMO-SkyMed SAR images. However, the displacement of landslides 
is much more complicated than the vertically dominated land subsi-
dence; thus, there are no previously published studies in which the time- 
gapped InSAR displacement time series from different SAR platforms are 
linked in a common direction (e.g., sliding direction of slope). For the 
second issue, the ideal solution is to define the unique and physical 
sounding movement direction of the slope. The mean slope angle and 
aspect derived from digital elevation models (DEMs) was regarded as the 
overall sliding direction of a landslide in previous studies (e.g., Kang 
et al., 2017), without considering the sliding direction for each block or 
pixel of the landslide. Moreover, geologists have demonstrated that the 
sliding direction of the landslide varies along with displacement evo-
lution (Lu, 2015). 

The main objective of this study was to propose a new InSAR-based 
approach to investigate landslide characteristics, with threefold 
research outcomes, producing: (1) 3D and long-term time series 
displacement monitoring, (2) interpretation of kinematic evolution and 
displacement characteristics, and (3) determination of the creep be-
haviours and possible driving factors of landslides. The proposed 
method was used to characterize the landslides over Gongjue County, 
Tibet, China, using C- and L-band SAR images from three different 
platforms (i.e., C-band ENVISAT, L-band ALOS/PALSAR-1, and C-band 
Sentinel-1) that were acquired from January 2007 to November 2018. 
The study area is situated on the southeast edge of the Qinghai-Tibet 
Plateau, where a series of large-scale ancient landslides are placed as a 
result of the coupling effects of the complex geological settings, high 
annual precipitation, and river erosion (Lu et al., 2019; Li et al., 2021). 
First, active landslides were detected and mapped using the ALOS/ 
PALSAR-1, ENVISAT, and Sentinel-1 SAR images. Second, the 2D 
displacement rates and time series of all detected landslides were esti-
mated by the fusion of ascending and descending Sentinel-1 SAR images. 
Then, 3D displacement rates and time series were calculated for one 
translational landslide, i.e., the Shadong landslide. Evidence from field 
geological exploration (Li et al., 2021) illustrated that the Shadong 
landslide is a giant ancient landslide with characteristic of translational 
movement. Next, the long-term (nearly 12 years) displacement time 
series of the Shadong landslide in the sliding direction was retrieved by 
fusing all three SAR datasets. Finally, the displacement characteristics, 
kinematic evolution, creep behaviours and possible driving factors of the 
landslides were analyzed and determined. 

2. Study area and datasets 

2.1. Study area 

The study area is situated on the right bank of the Jinsha River, 
Gongjue County, Tibet, China (Fig. 1), and has an area of approximately 
176 km2. It belongs to the southeast edge of the Qinghai-Tibet Plateau, 
with steep topography and complex geological conditions as a result of 
the rapid uplift of the Qinghai-Tibet Plateau (Wang et al., 2000; Li et al., 
2006). The elevation in most parts of the study area is higher than 3000 
m a.s.l. reaching more than 4000 m a.s.l. in some regions (Fig. 1). Val-
leys feature strong “V”-shaped topography due to violent river down-
ward cutting and the rapid uplifting of the Qinghai-Tibet Plateau. The 
height differences range from 500 to 2000 m, resulting in slope angles of 
greater than 25◦ in most slopes. The climate belongs to the continental 
plateau monsoon, and rainfall is concentrated in the summer each year. 
The annual average temperature and precipitation are approximately 
6.5 ◦C and 480 mm, respectively. Strong physical weathering on the 
surface of slope materials has occurred owing to the influence of the 
climate. 

The geological map with the scale of 1: 250000 in the study area is 
presented in Fig. 2(a). The outcrops are composed of Paleo- 
Mesoproterozoic, Lower Triassic, Carboniferous–Permian, Silurian, 
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and Late Triassic strata (Fig. 2). They mainly include plagiogneiss 
(Pt1− 2Nd), mica quartz schist (Pt1g), basalt (Pt1x), limestone (CPca), 
carbonate (Sca), quartz diorite (δoT3), monzonitic granite (ηγT3), quartz 
monzonite (ηoT3), and ultrabasic rocks (

∑
). The attitude and dip angle 

of schistosity in the study area greatly vary as the influence of tectonic 
movements, mainly ranging from 17 to 50◦. The tectonic setting is 
conditioned by a series of NW-trend faults (Li et al., 2021); significant 
among them are the Jinsha River (F1, F2 and F3 marked in Fig. 1) and 
Batang faults (F4 marked in Fig. 1) (Chen et al., 2013), thus resulting in 
frequent seismic activities. There have been approximately 22 earth-
quakes of Mw ≥ 3.0 in the study area and its surroundings since 1954, 
including three stronger earthquakes greater than Mw = 5.0, which 
occurred in 1954, 1979, and 1989. 

The complex geological settings, tectonic movements, high annual 
precipitation, and river erosion and human activities work together to 
lead to the extensive distribution and strong activity of large-scale 
landslides in the study area (Ma et al., 2004; Li et al., 2021). The li-
thology of the stratum provides favorable geological conditions for the 
occurrence of landslides, and it is an inherent factor in the formation of 
landslides. We can see from Fig. 2(a) that the landslides are basically 
distributed in the Gangtuo Rock Formation (PT1g) of Lower Triassic. 
This kind of formation belongs to the weaker rock mass and is prone to 
slide under the action of shear stress (Li et al., 2021). Generally, rock 
masses are more likely to fracture in active tectonic zones, and landslide 
susceptibility directly correlates with the distribution and activity of 
faults (Guo et al., 2015). It should be mentioned that the Xiongsong- 
Suwalong fault passes through the Shadong and Sela landslides (No.2 
and No.3 labeled in Fig. 2(a)). Heavy rainfall in the summer can lead to 
the decrease of shear strength of the soil due to the rise of the river water 
level and water infiltration favoured by the existence of cracks, thus 

driving the landslide movements. Remote sensing images show that the 
foot of most of the landslides intersects the Jinsha River. The stress of the 
foot of the slopes can be changed by the intense scouring and erosion of 
the Jinsha River; additionally, the variations in the Jinsha River water 
level can alter the shear strength of slope material, thus generating 
large-scale pull-type landslides (Lacroix et al., 2020; Li et al., 2021). 
Landslide hazards greatly endanger the safety of the cities and towns as 
well as the traffic lines in this area. The landslides could block the Jinsha 
River when the rupture occurs, thereby also threatening the normal 
operation of hydropower stations. Previous studies have mapped the 
distribution of landslides in this area using InSAR and optical remote 
sensing methods (Lu et al., 2019). However, complete investigations of 
the landslides in terms of 3D displacements, kinematic evolution, and 
creep behaviours are absent. 

Among the distributed landslides, field survey (Li et al., 2021) and 
optical image from unmanned aerial vehicle (UAV) measurement 
(Fig. S1(a)) show that the Shadong landslide (Fig. 2(b)) is a giant ancient 
landslide, with an area of approximately 5.33 km2. From the optical 
image and shaded relief map shown in Figs. S1 (c) and (d), the severe 
collapse can be evidently seen at the front edge of the landslide, as a 
result of the erosion of the Jinsha River. Additionally, field geological 
survey showed that several large scarps and cracks have been developed 
on the slope surface (Figs. 2(b) and S2), the height of the scarps ranges 
from 0.5 to 3.0 m, and the width of the cracks ranges from 5 to 150 cm 
(Li et al., 2021). Based on the geomorphological analysis (Fig. S1(b)), in 
conjunction with the developments of the gullies, the entire landslide 
can be divided into five different blocks as shown in different colors in 
Fig. 2(b). Geomorphic features and slope aspect derived from UAV DEM 
indicate that these blocks have different sliding directions (Figs. S1 and 
2(a)), among which blocks B1, B2 and B4 are moving toward the 

Fig. 1. Location of the study area and coverage of the synthetic aperture radar (SAR) images, with SRTM DEM as the base map. The white and black rectangles 
represent the study area and the coverage of the SAR images, respectively, and the red dots are the earthquakes that occurred in the study area and vicinity during the 
period of 1954 to 2019. The red lines are the faults modified from Li et al., 2021, where F1: Jinsha River East Fault; F2: Jinsha River Main Fault; F3: Xiongsong- 
Suwalong Fault; and F4: Batang Fault. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

X. Liu et al.                                                                                                                                                                                                                                      



Remote Sensing of Environment 267 (2021) 112745

4

northeast direction, and blocks B3 and B5 are moving toward the east 
direction. Moreover, two secondary sliding regions R1 and R2 (Figs. S1 
(a) and (b)) were found in blocks B1 and B3 respectively, by visual 
interpretation of UAV image. From the optical image and shaded relief 
map shown in Figs. S1(e) and (f), we can clearly see that there have been 
developed two large cracks (yellow arrows in Figs. S1(e) and (f)) and a 
scarp (red arrows in Figs. S1(e) and (f)) at the both sides and head of the 
Region R1, respectively. The landslide is mainly composed of rock and 
soil fragments (Q4

del) and mica quartz schist (PT1g) (Fig. 2(c)). The 
attitude of the bedrock is 190–256◦∠17–37◦ (Li et al., 2021). The 
Xiongsong-Suwalong fault, a branch of the Jinsha River fault zone, 
passes through the middle and back sections of the landslide in the NNW 
direction (Figs. 2(b) and (c)). Field geological exploration revealed that 
the landslide is a translational slide according to Cruden and Varnes 
(1996) classification, with two potential failure planes (Li et al., 2021), i. 
e., S1 and S2 marked in Fig. 2(c). The first failure plane (S1) with a depth 
of 51–56 m, corresponds to a landslide volume of 2.67 × 108–2.88 × 108 

m3; and the second failure plane (S2) with a depth of 101–115 m, cor-
responds to a landslide volume of 5.28 × 108–6.02 × 108 m3. In addi-
tion, field geological exploration found that there are two major locked 
segments in the middle of the Shadong landslide that control the deep- 

seated stability of the landslide (Li et al., 2021), as shown by the green 
lines in Fig. 2(c). 

2.2. Datasets 

To demonstrate the proposed approach and investigate the detailed 
landslide characteristics, 165 SAR images composed of four independent 
SAR datasets from three different sensors onboard the ENVISAT, ALOS/ 
PALSAR-1, and Sentinel-1 satellites were obtained. The spatial coverage 
of the SAR datasets used in this study is shown in Fig. 1, and the basic 
parameters of the SAR images are summarized in Table 1. The 2D and 3D 
displacement rates and time series were estimated using ascending and 
descending Sentinel-1 SAR images. As there exists a time gap of nearly 
four years where no SAR images were archived, we recovered the long- 
term displacement time series in the sliding direction by fusing the 
ascending ALOS/PALSAR-1 and Sentinel-1 SAR measurements using the 
Tikhonov regularization method (Tikhonov, 1963). It is worth noting 
that the ALOS/PALSAR-1 images were acquired under both modes of 
fine-beam dual-polarization (FBD) and beam single-polarization (FBS), 
and the SAR images in FBD mode were oversampled to the FBS mode in 
this study to improve the spatial resolution. 

Fig. 2. (a) Geological setting of the study area, with the scale of 1: 250000. The name of the labeled landslides (i.e., No.1 ~ No.13) is listed in Table 2, and the red 
lines indicate the faults. (b) Shaded relief map of the Shadong landslide, labeled as No.2 in (a). The polygons with different colors represent five blocks (B1-B5) of the 
landslide. (c) Geological cross section along the Profile I-I′ marked in (b), adapted from Li et al., 2021. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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We employed a standard differential InSAR (DInSAR) procedure to 
handle all SAR images as follows. To avoid the influences of temporal 
and spatial decorrelation, all possible interferometric pairs of the 
Sentinel-1 dataset were generated using a small baseline subset (SBAS) 
strategy (Berardino et al., 2002). The spatial and temporal baseline 
thresholds were set at 250 m and 60 d, respectively. A full combination 
was conducted to generate the interferograms for the ALOS/PALSAR-1 
and ENVISAT datasets, as we had collected a relatively small quantity 
of SAR data. After the interferogram filtering (Goldstein and Werner, 
1998) and phase unwrapping (Costantini, 1998), we carefully checked 
and processed the errors related to residual topography, phase 
unwrapping and atmospheric artifacts. Furthermore, the corrected 
unwrapped interferograms with high quality were finally chosen for 
further processing. The spatiotemporal baseline combinations of the 
selected interferograms for each SAR sensor are shown in Fig. 3. To unify 
the spatial resolution and to map small-scale landslides, the interfero-
grams were multi-looked using factors of 2 × 5 (range × azimuth) for 
ALOS/PALSAR-1 images, 1 × 5 (range × azimuth) for ENVISAT images, 
and 4 × 1 (range × azimuth) for Sentinel-1 images. The pixel spacing of 
the multi-looked images in both the ground-range and azimuth di-
rections was approximately 15 m for the ALOS/PALSAR-1 images, 20 m 

for the ENVISAT images, and 15 m for the Sentinel-1 images. One arc- 
second SRTM DEM with a spatial resolution of 30 m was adopted to 
remove the topographic phase during differential InSAR processing. 

3. Methodology 

A new approach to fuse C- and L-band SAR images for 3D and long- 
term displacement time series monitoring of landslides is presented in 
this section. Fig. 4 shows the workflow and main modules of the 
approach, which can be organized into four steps as follows. 

Step 1: Each SAR dataset was processed independently to generate 
unwrapped interferograms using the standard DInSAR procedure, 
including interferogram generation; filtering; phase unwrapping; qual-
ity checking; and corrections for atmospheric artifacts, DEM errors, and 
phase unwrapping errors. The high-quality unwrapped interferograms 
of each SAR dataset were geocoded and resampled to an identical spatial 
grid in the World Geodetic System 1984 (WGS 84) coordinate system 
with a spatial resolution of 15 m for further processing. Then, the 
displacement rate of each SAR dataset in the LOS direction was calcu-
lated using the stacking interferograms method (Lyons and Sandwell, 
2003) to detect and map active landslides. This was done because the 

Table 1 
Basic parameters of SAR images used in this study.  

Sensors Track Orbit Heading (◦) Incidence angle (◦) Start date 
dd/mm/yyyy 

End date 
dd/mm/yyyy 

No. of images No. of interferograms 

ALOS/PALSAR-1 484 Ascending − 10.29 38.73 02/01/2007 28/02/2011 16 37 
ENVISAT ASAR 190 Descending − 168.17 23.54 21/02/2007 13/10/2010 17 35 
Sentinel-1 99 Ascending − 10.46 33.85 12/10/2014 03/10/2018 79 198 
Sentinel-1 33 Descending 170.02 43.94 01/12/2016 03/11/2018 53 120  

Fig. 3. Spatial-temporal baseline combinations of all interferograms used in this study. (a) ALOS/PALSAR-1 dataset for Path 484; (b) ENVISAT dataset for Path 190; 
(c) ascending Sentinel-1 dataset for Path 99; and (d) descending Sentinel-1 dataset for Path 33. 
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combination of multi-platform SAR datasets to detect active landslides 
can not only cross-validate the results, but also weaken the influence of 
SAR geometric distortions on landslide mapping in areas with steep 
topography with single-track SAR dataset. 

Step 2: The 2D displacement rates and time series were calculated 
using the unwrapped interferograms from the identical SAR platform 
with different flight directions (i.e., ascending and descending Sentinel- 
1 images). Furthermore, for translational landslides, the 3D displace-
ment rates and time series were further calculated with the same 
unwrapped interferograms by imposing a constraint on the surface 
parallel flow (Sun et al., 2016; Samsonov, 2019). The dominant move-
ment directions of landslides were determined using the obtained 2D 
and 3D displacement maps and the geomorphological features that were 
obtained from DEM and optical images, including satellite and un-
manned aerial vehicle (UAV) images. 

Step 3: The optimal sliding direction for each pixel of the trans-
lational landslide was estimated using the InSAR-derived 3D displace-
ment fields. Subsequently, the LOS measurements from different SAR 
platforms were transformed into the estimated sliding direction to 
achieve a unified datum of different SAR observations. Then, the 
unwrapped interferograms from different SAR platforms, which had 

identical flight directions (i.e., L-band ascending ALOS/PALSAR-1 and 
C-band ascending Sentinel-1 images) without overlap in the time 
domain, were linked to estimate the long-term displacement time series 
in the sliding direction using the Tikhonov regularization and singular 
value decomposition (SVD) methods. It is worth noting that an identical 
reference region was chosen for phase unwrapping to avoid systematic 
biases among the results from different SAR platforms. 

Step 4: The displacement patterns and kinematic evolutions of 
landslides were investigated. The possible driving factors were deter-
mined for certain representative landslides based on the 2D and 3D 
displacement rates, time series, and hydrological factors including pre-
cipitation and water level fluctuation in the Jinsha River. Finally, uni-
dimensional constitutive models of the rocks developed by laboratory 
creep testing (Aydan et al., 2014) were exploited to analyze the kine-
matic evolution and to determine the creep behavior of the landslide. 

3.1. Inversion of two- and three-dimensional (2D and 3D) landslide 
displacement rates and time series 

In general, InSAR satellites are insensitive to any movement along 
the azimuth direction (approximately in the north-south direction) as 

Fig. 4. Flowchart of 3D and long-term displacement time series estimation and mechanism analysis of landslide.  
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most SAR satellites operate in near-polar orbits (Samsonov et al., 2013). 
Therefore, for one specific landslide, if both ascending and descending 
SAR images are available with overlapping time intervals, the 2D 
displacement rates can be inverted using Eq. (1). This can be done based 
on the imaging geometry of SAR satellites by ignoring the displacement 
components in the north-south direction (Samsonov et al., 2014): 
(

Ĝ
Γ

)

⋅
(

VE
VU

)

=

(
d̂
0

)

(1)  

where d̂ is the observation vector in the LOS direction from the 
ascending and descending tracks, VE and VU are the displacement rate 
parameters in the east-west and vertical directions, respectively; Ĝ is the 
design matrix of observations consisting of east-west and vertical com-
ponents of the LOS vector and time intervals between consecutive SAR 
acquisitions; and Γ is the Tikhonov matrix composed of the regulariza-
tion parameter λ and regularization order L. 

As 2D displacement parameter estimation from multi-platform SAR 
acquisitions is a rank-deficient and ill-posed inversion problem, Eq. (1) 
is built by imposing the Tikhonov regularization constraint to stabilize 
parameter inversion; additionally, it can also be built by imposing the 
additional constraint that the displacement time series have minimum 
acceleration (Pepe et al., 2016b). The unknown 2D displacement rates 
VE and VU in Eq. (1) can be estimated using SVD, and the 2D displace-
ment time series are then retrieved through numerical integration of the 
time intervals between adjacent SAR acquisitions based on the estimated 
2D displacement rates. 

When the north-south displacement component cannot be neglected, 
it is necessary to retrieve 3D displacements. To date, several approaches 
have been explored to retrieve 3D displacements by combining multi- 
platform SAR observations as well as integrating DInSAR-based 
displacement results with external data, which includes combining of 
multi-track LOS and multiple aperture interferometry (MAI) measure-
ments (Wright et al., 2004), fusion of the DInSAR and offset-tracking 
measurements (Hu et al., 2014a), combining multi-track offset- 
tracking measurements (Raucoules et al., 2013), integrating DInSAR and 
global navigation satellite system (GNSS) measurements (Samsonov 
et al., 2007), and using a priori information as a constraint (Gourmelen 
et al., 2011). Offset-tracking and MAI methods are challenging to map 
the displacement of slow-moving landslides owing to their low mea-
surement precision. In the case that the SAR data sets from three 
different platforms are available and with distinctive flight directions 
and incidence angles, the 3D displacement rates and time series can be 
generated using a minimum acceleration approach (Pepe et al., 2016b). 
If only two independent SAR datasets from ascending and descending 
tracks are available, it is still possible to estimate the 3D landslide dis-
placements by applying an a priori model about displacement process to 
reduce the free degrees. The surface-parallel flow model (Gourmelen 
et al., 2011) is an acceptable assumption in the displacement mapping of 
landslides. 

For translational landslides, the movement direction is almost par-
allel to the ground surface under the effect of gravity (Varnes, 1996). 
Therefore, the surface–parallel displacement rate can be assumed as 
follows (Gourmelen et al., 2011; Sun et al., 2016): 

VU =

(
∂H
∂x

)

VE +

(
∂H
∂y

)

VN (2)  

where H is the elevation of the topography, and ∂H
∂x and ∂H

∂y represent the 
first derivatives in the east and north directions, respectively, which can 
be estimated using the external DEM. The sliding surface of a trans-
lational slide is an approximately regular plane, which is usually 
smoother than the external DEM (Frattini et al., 2018). Thus, prior 
filtering of the DEM often needs to be conducted to remove the effect of 

surface features on landslide displacement estimation. The 3D 
displacement inversion model can be constructed using Eqs. (1) and (2) 
(Samsonov, 2019): 
⎛

⎝
Ĝ
H
Γ

⎞

⎠⋅

⎛

⎝
VN
VE
VU

⎞

⎠ =

⎛

⎝
d̂
0
0

⎞

⎠ (3)  

where H is the constraint of surface–parallel flow and stands for 
{

∂H
∂y,

∂H
∂x, − 1

}

; similarly, Ĝ is the new design matrix of observations 

composed of the matrix G and north-south, east-west, and vertical 
components of the LOS vector; and VN, VE and VU are the unknown 
displacement rates in the north-south, east-west, and vertical directions, 
respectively. Eq. (3) can be solved using the SVD method to obtain the 
3D displacement rates, and the 3D displacement time series are then 
recovered through the numerical integration mentioned above. 

3.2. One-dimensional long-term displacement time series estimation of 
landslide 

To forecast the time of failure of a specific active landslide, it is of 
great significance to retrieve long-term (longer than 10 years) historical 
displacement time series by fusing multi-platform SAR observations. 
Assuming two independent SAR datasets S1 and S2 without overlap in 
the time domain, their SAR acquisition dates would be T1 = [T1, 1,T1, 

2,⋯,T1, S1] and T2 = [T2, 1,T2, 2,⋯,T2, S2], respectively. The unwrapped 
interferograms of two SAR datasets with homologous highly coherent 
pixels, namely d1 = [d1, 1,d1, 2,⋯,d1, M1] and, d2 = [d2, 1,d2, 2,⋯,d2, M2] 
are linked to produce a long-term displacement time series, namely, D =
[D1,D2,⋯,DT1+T2], which spans all acquisition dates T1 + T2 of the two 
SAR datasets. Moreover, all displacement time series are referred to as 
the earliest acquisition dates T1, 1. 

InSAR measurements are a projection of the real 3D displacements of 
the earth’s surface in the LOS direction of each SAR satellite, and SAR 
images from different satellites possess different wavelengths, incidence 
angles, and flight directions. Therefore, we should transform the LOS 
measurements from different SAR satellites to the unique sliding direc-
tion of the landslide based on the SAR imaging geometry and landslide 
geometry (Cascini et al., 2010). Here, we retrieved the optimal sliding 
direction for each pixel of the landslide using the InSAR-derived 3D 
displacements. In the monitoring of land subsidence, the time-gapped 
InSAR displacement time series from different SAR platforms can be 
linked using an a priori time-dependent model for the on-going dis-
placements (Pepe et al., 2016a). However, for landslides it is difficult to 
find an a priori model that can exactly characterize the on-going slope 
displacements, since they are strongly controlled by external variables 
(e.g., rainfall, reservoir level, seismic events) that change the movement 
trends over time. Thus, in order to resolve the problem of rank defi-
ciency caused by the time gap between two SAR datasets, we adopt the 
Tikhonov regularization method as follows (Tikhonov, 1963): 
[

G
Γ

]

⋅m =

[
d
0

]

(4)  

where G = [GS1,GS2]Τ is the design matrix consisting of time intervals 
between consecutive SAR acquisitions of two datasets, d = [d1,d2]Τ is 
the observations from two datasets, m represents the unknown 
displacement rate vector in the sliding direction of the landslide with the 
elements as [m0,m1,m2,⋯,mT1+T2− 1]Τ, and Γ is the Tikhonov matrix 
composed of regularization order L and regularization parameter λ, 
where the first-order regularization is adopted in this study. The optimal 
value of λ is estimated using the L-curve method (Hansen and O’Leary, 
1993). Eq. (4) can then be resolved based on the criterion of minimizing 
the objective function, as shown in Eq. (5): 
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min
(
‖Gm − d‖2

L2
+‖Γm‖

2
L2

)
(5)  

where ‖⋅‖L2 represents the Euclidean L2 norm. Thus, the unknown 
displacement rate vector can be expressed as follows in Eq. (6), and the 
displacement time series is then reconstructed through numerical inte-
gration of the estimated displacement rates, as shown in Eq. (7): 

m̂ = (GΤG + ΓΤΓ)− 1⋅GΤd (6)  

Di+1 = Di +miΔti, i = 0, 1, 2,⋯, T1 +T2 − 1 (7)  

4. Displacement retrieval results and analyses 

4.1. Line-of-sight (LOS) displacement rates between January 2007 and 
November 2018 

The LOS displacement rate of each SAR dataset in the study area was 
independently calculated using the standard DInSAR procedure and 
stacking interferogram method (Lyons and Sandwell, 2003), as shown in 
Fig. 5. It is worth noting that the negative values (red color) represent 
the landslide moving away from the sensor, and the positive values (blue 
color) indicate movement toward the sensor. Dense measurement scat-
terers (MSs) with total numbers of 434,927, 521,529 and 551,649 were 
identified from the ascending ALOS/PALSAR-1 (Fig. 5(a)), ascending 

Fig. 5. Line-of-sight (LOS) displacement rate maps for the study area derived from (a) ascending ALOS/PALSAR-1 images between January 2007 and March 2011; 
(b) descending ENVISAT images between February 2007 and October 2010; (c) ascending Sentinel-1 images between August 2016 and October 2018; and (d) 
descending Sentinel-1 images between December 2016 and November 2018. The labels indicate the name of the detected landslides listed in Table 2, and the white 
solid polygons indicate the boundaries of the landslides. 
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Sentinel-1 (Fig. 5(c)) and descending Sentinel-1 (Fig. 5(d)) datasets 
respectively, producing an overall spatial density of greater than 2450 
MSs/km2 for the three SAR datasets. These scatterers were identified on 
the roads, buildings, and rocks and soils with sparse vegetation. In 
contrast, extremely sparse MSs of only 60,798 were identified from 
ENVISAT dataset, generating an overall density of less than 400 MSs/ 
km2. Compared with other three SAR datasets, the incidence angle of the 
ENVISAT satellite was as small as 23◦, thus causing severe geometric 
distortions (i.e., layover and shadow) of the SAR images (Wasowski and 
Bovenga, 2014), which result in extremely sparse MSs for landslide 
detection. As shown in Fig. 5, large-scale displacement regions were 
detected in the study area, and most displacement regions were greater 
than 2 km in length and/or width. For displacement rates calculated 
with ascending ALOS/PALSAR-1 (Fig. 5(a)) and ascending Sentinel-1 
SAR images (Fig. 5(c)), the displacement regions and their extent were 
basically consistent, but the displacement magnitude and the detailed 
patterns were locally different across regions, likely due to the different 
wavelengths, imaging geometries, and acquisition durations between 
the two SAR datasets (see Table 1). Moreover, the locations of detected 
active displacement regions were generally consistent between 
ascending and descending Sentinel-1 measurements, but the extent of 
the displacement measured by ascending images was substantially 
greater than that of descending images (see Figs. 5(c) and (d)). This can 
be attributed to the slope orientation and the different sensitivities of 
landslide movement to the flight direction between ascending and 
descending SAR images. Therefore, we can combine both ascending and 
descending SAR images to map the complete extent of active landslides. 

Layover will be caused if the slope angle of the landslide is larger 
than the incidence angle of the SAR images, resulting in omissions for 
landslide detection. To avoid the effect of layover on the landslide 
mapping, we detected active landslides using a combination of the 
displacement rates derived from ascending ALOS/PALSAR-1, descend-
ing ENVISAT, and ascending and descending Sentinel-1 images, i.e., 
active landslides are first detected respectively using the displacement 
rates calculated with ascending ALOS/PALSAR-1, descending ENVISAT, 
and ascending and descending Sentinel-1 images, and then the mapped 
landslides from each SAR dataset are mosaiced to produce the final 
landslide inventory map. The location and distribution of the detected 
active landslides are shown in Fig. 6, and detailed information is pre-
sented in Table 2. These landslides are situated at slope angles ranging 
from 10◦ to 51◦, which can be attributed to the unique geological set-
tings in the study area (Wang et al., 2000). Results from archived ALOS/ 

PALSAR-1 and ENVISAT images indicate that these detected landslides 
have been active since January 2007. However, the spatiotemporal 
displacement characteristics of these landslides were inconsistent during 
different periods. For instance, the large displacement of the Shadong 
landslide mainly occurred in the middle and upper left regions between 
January 2007 and March 2011 and transferred to the lower right regions 
between August 2016 and October 2018, as shown in Figs. 5(a) and (c). 

4.2. Two-dimensional displacement patterns of the detected landslides 

One-dimensional LOS displacement results can be applied to deter-
mine the locations and spatial extents of landslides. However, it is 
challenging to accurately delimit the boundary of a landslide and 
determine its movement direction by merely using the LOS displacement 
results. Fig. 7 shows the 2D displacement rate maps in the east-west and 

Fig. 6. Location and extent of the detected active landslides on the perspective remote sensing image. The points indicate the location of the main villages placed in 
the study area. 

Table 2 
Basic information of the detected landslides.a  

No. Location 
Name 

Aspect 
(◦) 

Slope 
(◦) 

Detected from 
SAR image 

Dominant 
displacement 

1 Laduoting 342 22–43 ALOS, S1A, 
S1D 

Vertical and 
North 

2 Shadong 32, 75 15–38 ALOS, S1A, 
S1D 

Vertical, North 
and East 

3 Sela 125 15–51 ALOS, S1A, 
S1D 

East 

4 Geguo 215 18–42 EV, S1D South and West 
5 Majue 70 20–38 ALOS, S1A, 

S1D 
Vertical, North 
and East 

6 Guoba 75 14–36 ALOS, S1A, 
S1D 

East 

7 Gongba 91, 110 10–35 ALOS, S1A, 
S1D 

Vertical and East 

8 Shangquesuo 140, 
155 

20–40 ALOS, S1A, 
S1D 

East 

9 Shangde No.1 60 15–34 ALOS, S1A East 
10 Shangde No.2 45 15–32 ALOS, S1A North and East 
11 Decun 350 14–34 ALOS, S1A, 

S1D 
Vertical and 
North 

12 Suoxue No.1 90 18–44 ALOS, S1A, 
S1D 

Vertical and East 

13 Suoxue No.2 349 22–38 ALOS, S1D North and West  

a Notes: ALOS and EV represent ALOS/PALSAR-1 and ENVISAT SAR images, 
respectively; and S1A and S1D stand for ascending and descending Sentinel-1 
SAR images, respectively. 
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vertical directions of the detected landslides; the displacement rates 
were calculated using the method described in Section 3.1, where the 
positive values (blue color) indicate eastward movement and the 
negative values (red color) indicate westward movement in the hori-
zontal component map (Fig. 7(a)), and the negative values (red color) 
represent the downward movement and the positive values (blue color) 
represent upward movement in the vertical component map (Fig. 7(b)). 
The maximum east-west displacement rate is greater than 8 cm/year, 
and the maximum vertical displacement rate is less than − 7 cm/year. In 
general, the displacement and failure patterns of landslides are subject 
to topography, lithology, and geological structure of slopes, as well as 
external driving factors, such as earthquakes and rainfall. From Fig. 7, 
we can see that each detected landslide has its own movement direction 
and displacement pattern. All the detected landslides except the 
Laduoting, Geguo and Suoxue No.2 landslides are moving eastward, 
whereas the Laduoting landslide is moving northward and the Geguo 
and Suoxue No.2 landslides are moving westward. It is worth noting 
that, evidence from optical image (Fig. S3) illustrates that the main 
movement direction of the Laduoting landslide is along the north-south 
direction, thus failing to measure its movement by the east-west 
displacement map presented in Fig. 7 (a). Moreover, most landslides 
are dominated simultaneously by horizontal and vertical movements, 
such as the Laduoting, Shadong, Majue, Gongba, Decun, and Suoxue 
No.1 and No.2 landslides (see Table 2), and some landslides are domi-
nated by horizontal movement, such as the Sela and Geguo landslides 
(see Table 2). 

4.3. Three-dimensional displacement characteristics of the Shadong 
landslide 

It is necessary to retrieve the 3D displacement rates and time series of 
landslides if the north-south displacement cannot be neglected. We take 
the Shadong landslide located at the outside of a meander bend of the 
Jinsha River, as an example to retrieve its 3D displacement rates and 
time series using the method described in Section 3.1. Field geological 
exploration (Fig. 2(c)) revealed that the landslide can be classed as a 
translational slide according to Cruden and Varnes (1996) classification. 
Fig. 8(a) shows the optical remote sensing image of the Shadong 

landslide acquired in March 2015. The extent of the landslide is ~ 2.61 
km in length and ~ 2.93 km in width. The polygons with different colors 
in Fig. 8(a) indicate different blocks (i.e. B1-B5) of the landslide, which 
are divided according to the geomorphological analysis and the de-
velopments of the gullies (see Section 2.1). The 3D displacement rates in 
the north-south, east-west, and vertical directions from December 2016 
to October 2018 are shown in Figs. 8(b), (c), and (d), respectively. The 
positive values (blue color) indicate northward movement and the 
negative values (red color) indicate southward movement in Fig. 8(b). 
The maximum displacement rates in the north-south, east-west, and 
vertical directions were more than 80, 76, and − 67 mm/year, respec-
tively. We then extracted the displacement rates and elevation along two 
representative Profiles AA’ and BB’ (see Fig. 8(d)) to reveal the detailed 
spatial displacement characteristics, as shown in Fig. 9. The error bars in 
Fig. 9 indicate the standard deviations of the estimated 3D displacement 
rates. Profile AA’ is approximately parallel to the main sliding direction 
of block B1, and Profile BB’ transversely passes through blocks B1-B4. 
Furthermore, the optimal sliding direction for each pixel of the land-
slide was calculated using the estimated 3D displacement rates, as 
shown in Fig. 10. 

As shown in Figs. 8, 9, and 10, the 3D displacement map provides an 
intuitive description of the displacement characteristics and movement 
direction of each block of the Shadong landslide, which can be further 
used to analyze the displacement characteristic and failure mode on a 
detailed scale. In particular, the displacement characteristic obtained 
from the 3D displacement results exhibit strong agreement with the 
actual geomorphological features of the slope observed from satellite 
and UAV images (see Figs. 8 and S1), presenting the characteristics of 
block displacement. The north and vertical displacement rates on blocks 
B1–B2 are larger than those on blocks B3–B4. In contrast, the east-west 
displacement rates of blocks B1–B2 are slightly lower than those of 
blocks B3–B4, except at the lower-right part of block B1. From the 3D 
displacement results shown in Figs. 8(b), (c), and (d), we can clearly see 
a distinct sliding boundary between block B1 and block B2. As evidenced 
in the east-west and vertical displacement rate maps shown in Figs. 8(c) 
and (d), the entire landslide shows a trend of eastward and downward 
movement. However, evidence from Figs. 8(b) and 9 suggests that the 
northward displacement mainly occurred in blocks B1, B2 and B4, and 

Fig. 7. Two-dimensional displacement rate maps of the detected landslides from December 2016 to October 2018 calculated with ascending and descending 
Sentinel-1 images. The white solid polygons indicate the boundaries of the landslides. (a) Horizontal east-west displacement rate map; and (b) vertical displacement 
rate map. 
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there is no remarkable north-south displacement in the block B3 except 
for a small region on its left side (i.e., R2 labeled in Fig. 8(b)). The 
geomorphological feature and optical image (Fig. S1(a) and (b)) 

demonstrate that the Region R2 is a secondary sliding area on the block 
B3, and it moves mainly to the north direction. Furthermore, geomor-
phological analysis and slope aspect indicate that blocks B1, B2 and B4 

Fig. 8. Remote sensing image and 3D displacement rate maps from December 2016 to October 2018 of the Shadong landslide. The boundary of the landslide 
movement is marked using the red solid lines, and the black dotted polygons (i.e., R1 and R2) in (b) indicate the two secondary sliding regions. (a) Remote sensing 
image acquired in March 2015, where different colors represent five blocks of the landslide; (b) north-south displacement rate map; (c) east-west displacement rate 
map, from which Points P1–P4 are analyzed in the text to show displacement time series; and (d) vertical displacement rate map, where two black lines indicate the 
locations of Profiles AA’ and BB’. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Displacement rates along the three components and elevation along the Profiles AA’ and BB’ labeled in Fig. 8(d). (a) Profile AA’; and (b) Profile BB’, where 
B1, B2 and B3–B4 indicate block 1, block 2 and blocks 3–4 of the Shadong landslide labeled in Fig. 8(a), respectively. 
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are moving toward the northeast direction, and blocks B3 is moving 
toward the east direction, as described in detail in Section 2.1. 

In Fig. 9(a), the 3D displacement rates of block B1 (along profile AA’) 
are negatively correlated with the elevation, that is, the displacement at 
the lower section is larger than that at the middle-to-upper section. This 
evidence indicates that block B1 belongs to a pull-type landslide (Lu, 
2015), which can be adequately verified by the displacement boundary 
presented in Fig. 8 and the geomorphological feature presented in 
Fig. 10, that is, the displacement boundary of block B1 is shaped like a 
tower, and the lateral width of the head is smaller than that of the foot. A 
similar type of landslide has previously been identified in the Wudongde 
reservoir area in the lower reaches of the Jinsha River (Zhao et al., 
2018). Moreover, the displacement rate in the north direction of block 
B1 is also larger than that in the east and vertical directions, which 
suggests that block B1 mainly moves toward the north. 

The largest displacement rates were observed at the leading edge of 
block B1, that is, Region R1 marked in Fig. 8(b). The movement direc-
tion of each pixel is shown in Fig. 10(b), and the 3D displacement rate 
maps are presented in Fig. 11. The boundary of the maximum 
displacement region can be clearly seen in Fig. 11, where the 3D dis-
placements are precisely bounded by the cracks and scarp. The region 
moves toward the Jinsha River with maximum displacement rates of 
approximately 125, 75, and − 40 mm/year in the north, east, and ver-
tical directions, respectively. The displacement in the north direction 
was significantly larger than that in the east and vertical directions as 
the slope faced north (see Figs. S1 and 11(a)). Region R1 is the most 
active area on the entire Shadong landslide, where a main scarp has 
formed at the back edge of the region, and two continuous, large cracks 
have also developed on the left and right sides of the region (see Figs. S1 
(e), (f) and 11). These displacement and geomorphological features are 
completely consistent with the failure modes I and III of pull-type 
landslide derived from the theoretical analyses of geologist (Lu, 2015). 
Thus, it can be concluded that block B1 are deforming along the entire 
weak face under the control of the mechanical behaviours (strain and 
shear stress) of geo-materials, and the shear deformation occurs in the 
Region R1 under the effects of external driving factors (e.g., water level 
fluctuations in the Jinsha River, see Section 5.2). 

In Fig. 10, the sliding directions show that the block B3 moves 

eastward, and the block B4 moves northward and eastward, which is 
highly consistent with the actual geomorphic features of blocks B3 and 
B4 (see the details in Section 2.1). Geomorphological analyses of optical 
images and shaded relief map suggest that the slope aspect of block B3 
mainly faces to the east, and the slope aspect of block B4 mainly faces to 
the northeast, see the details in Section 2.1 and Figs. 2(b) and S1. 

To investigate the temporal evolution of the landslide displacements, 
we selected four typical points (P1–P4 in Fig. 8(c)) located in different 
parts of the Shadong landslide to exhibit their 3D displacement time 
series. Points P1 and P2 are located on block B1, and Points P3 and P4 
are located on blocks B3 and B4, respectively. Fig. 12 shows the 
displacement time series along the three main components (i.e., north, 
east, and vertical directions) for Points P1–P4 from December 2016 to 
October 2018. We can see that the largest cumulative displacement that 
occurs at Point P1 was approximately 157, 116, and − 98 mm in the 
north, east, and vertical directions, respectively, and it corresponds to 
the fastest moving area (Fig. S1). Meanwhile, a larger cumulative 
displacement was also observed at Points P2 and P4, with cumulative 
displacements of 89, 43, and − 49 mm for Point P2 and 84, 97, and − 50 
mm for Point P4 in the north, east, and vertical directions, respectively. 
Point P3 showed relatively small cumulative displacements as − 7.3, 
60.5, and − 24.8 mm in the north, east, and vertical directions, 
respectively. Field geological exploration evidenced that there is a major 
locked segment in the area where Point P3 is located (Fig. 2(c)), and it 
controls the deep-seated stability of the Shadong landslide (Li et al., 
2021). Points P1, P2 and P4 showed an approximately linear displace-
ment trend in the three directions during the InSAR observation period 
from December 2016 to October 2018; and Point P3 exhibited a roughly 
linear movement trend, and there are short periods of acceleration 
displacement signal in some SAR acquisitions. Furthermore, the 
displacement time series along the three main components revealed that 
the temporal evolution of the displacement of the four points was 
inconsistent. The cumulative displacement of Points P1 and P2 in the 
north direction was larger than that in the east and vertical directions. In 
contrast, the displacement in the north direction of Points P3 and P4 is 
smaller than that in the east and vertical directions. 

Fig. 10. (a) The horizontal movement vector of the Shadong landslide; and (b) the enlarged horizontal movement vector over Region R1 marked in Fig. 8(b). The 
base map is the UAV image acquired on 13 June 2020, with a spatial resolution of 0.3 m. 
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4.4. Long-term displacement time series in the sliding direction of the 
Shadong landslide 

To generate long-term displacement time series in the sliding di-
rection of the Shadong landslide over ten years, we link the L-band 
ALOS/PALSAR-1 measurements acquired between January 2007 and 
March 2011 and the C-band Sentinel-1 measurements acquired between 
October 2014 and October 2018 with a four-year gap based on the 
method described in Section 3.2. First, we resampled the high-quality 
unwrapped interferograms from the ALOS/PALSAR-1 and Sentinel-1 
images to a common georeferenced grid with the uniform spatial reso-
lution of 15 m, and the common measurement scatterers among the two 
datasets were selected for further processing. Then, the resampled in-
terferograms in the LOS direction of the Sentinel-1 and ALOS/PALSAR-1 
images were transformed into the estimated sliding direction of the 
slope (Fig. 10). Subsequently, the long-term displacement time series 
was estimated using Eq. 4. Meanwhile, the long-term time series of 
displacements were also calculated using the least squares (LS) and 
linear fitting methods, respectively, to highlight the performance of the 
proposed method. 

Fig. 13 shows the long-term displacement time series of Points P1–P4 
(marked in Fig. 8(c)) of the Shadong landslide, where the red triangles 
indicate the displacements calculated with the proposed method (i.e., 

Tikhonov regularization), the blue rectangles indicate the ones calcu-
lated using the LS method, and the gray solid circles are the ones 
calculated by the linear fitting method. We can see that the results ob-
tained by the LS method exhibit a serious deviation compared with those 
obtained by the proposed method and the linear fitting method for the 
sake of rank deficiency problem. This suggests that the long-term 
displacement time series results generated by the LS method are unre-
liable to some extent (Pepe et al., 2016a). Comparison of the results 
derived from the Tikhonov regularization and linear fitting methods, the 
displacement time series results generated by the two methods are 
relatively close at Points P1 and P3; however, there is a large deviation 
at Points P2 and P4, which will be discussed in detail in Section 5.2. Here 
the results from the Tikhonov regularization method are finally selected 
to investigate the movement characteristics of the Shadong landslide 
over the past nearly 12 years. Results show that all points exhibit creep 
displacement characteristics, among which the fastest movement was 
measured in Region R1 marked in Fig. 8(b), and the cumulative 
displacement in the sliding direction at Point P1 was around − 1.33 m 
between January 2007 and October 2018. The smallest cumulative 
displacement was measured at Point P4 with a magnitude of approxi-
mately − 0.56 m. In addition, some large cumulative displacements were 
also observed at Points P2 and P3, with magnitudes of around − 0.97 
and − 0.8 m, respectively. A significant signal of the displacement 

Fig. 11. Three-dimensional displacement rate maps of Region R1 marked in Fig. 8(b). (a) UAV image acquired on 13 June 2020; (b) north-south displacement rate; 
(c) east-west displacement rate; and (d) vertical displacement rate. 
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acceleration was observed at Points P1, P2, and P3 from January 5 to 
May 22, 2008, which may be exactly correlated with the Wenchuan 
earthquake in Sichuan, China, on May 12, 2008 (Yin et al., 2009). 

Furthermore, we can see from Fig. 13 that Points P1, P2, P3, and P4 
experienced a nonlinear displacement trend during the period from 
January 2007 to October 2018. The movement rates of Points P2 and P3 

Fig. 12. The displacement time series along the three main components for Points P1–P4 (marked in Fig. 8(c)) of the Shadong landslide from December 2016 to 
October 2018. (a) P1; (b) P2; (c) P3; and (d) P4. 

Fig. 13. One-dimensional long-term displacement time series in the sliding direction of the Shadong landslide for Points P1–P4 calculated by fusing L-band ALOS/ 
PALSAR-1 and C-band Sentinel-1 SAR measurements from January 2007 to October 2018. (a) P1; (b) P2; (c) P3; and (d) P4. 

X. Liu et al.                                                                                                                                                                                                                                      



Remote Sensing of Environment 267 (2021) 112745

15

before October 10, 2009, were faster than those after October 10, 2009, 
and the slight acceleration signals of the displacement were detected at 
Points P1 and P4 on July 21, 2016. Thus, it is essential to conduct 
continuous displacement monitoring with newly acquired SAR images 
or ground-based equipment, such as GNSS or crack gauges. 

5. Discussion 

5.1. Kinematic evolution and creep behavior of the Shadong landslide 

To assess the long-term stability and forecast the time of failure of an 

active landslide, it is important to investigate its long-term kinematic 
evolution and creep behavior. Previous studies (Fukuzono, 1985; Intrieri 
et al., 2019; Satio, 1969; Aydan et al., 2014) have demonstrated three 
stages (also sometimes known as displacement-time curve) of the kine-
matic evolution and creep behavior of slopes before failure, as shown in 
Fig. 14(a). The first stage is the primary creep (or transient or deceler-
ating) with the displacement rate logarithmically decreasing, followed 
by the second stage of secondary creep (or constant-state) with a steady 
displacement rate. After a period of relative stability within the second 
stage, the third stage of tertiary creep (or hyperbolic acceleration) be-
gins, and the slope either accelerates until it ruptures (or fails) (A) or 

Fig. 14. Kinematic evolution and creep behavior of the Shadong landslide from January 2007 to October 2018. (a) Standard three-stage creep rupture curve of the 
slope (modified after Fukuzono, 1985; Intrieri et al., 2019; and Satio, 1969); (b) displacement time series (in the sliding direction) of the Shadong landslide for Point 
P1 derived from InSAR observations (black squares) versus that derived by modeling of rock’s unidimensional constitutive laws (blue curve); (c) displacement time 
series of Point P3 derived by InSAR observations (black squares) versus that derived by modeling (red and blue curves); (d) Residuals of Point P1, calculated by 
subtracting the modelled values (using Modified Lomnitz law) from the observed values; (e) Residuals of Point P3, calculated by subtracting the modelled values 
(using Lomnitz 1956, 1957) from the observed values. The locations of Points P1 and P3 are marked in Fig. 8(c). (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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accelerates and then reaches a new limit equilibrium (B), as shown in 
Fig. 14 (a). The results from laboratory creep testing of rocks (Aydan 
et al., 2014) have demonstrated that such the three stages can be 
characterized using unidimensional constitutive laws/models of the 
rocks, as illustrated in Eqs. (8)–(10). In these equations, Eq. (8) is 
applicable to primary stage, hereinafter refer as Lomnitz 1956, 1957; Eq. 
(9) is applicable to primary and secondary stages, hereinafter refer as 
Modified Lomnitz law; and Eq. (10) is applicable to all stages creep 
terminating with rupture, hereinafter refer as Aydan et al. 2003. 

S = A⋅ln(1+ αt) (Lomnitz 1956, 1957) (8)  

S = A+B⋅log(t) +C⋅t (Modified Lomnitz law) (9)  

S = A⋅
(
1 − e− t/τ1

)
+B⋅

(
et/τ2 − 1

)
(Aydan et al.2003) (10)  

where S indicates the displacement, A, B, α, C, τ1 and τ2 are constants, 
and t is the time. 

To investigate the kinematic evolution and creep behavior of the 
Shadong landslide, we applied unidimensional constitutive laws of the 
rocks to model the displacement behavior of Points P1 and P3 marked in 
Fig. 8(c). The displacement time series of Points P1 and P3 were 
modelled based on Eqs. (8), (9) and (10) using the Levenberg-Marquardt 
algorithm (Marquardt, 1963), respectively. The original InSAR obser-
vations, the modelled displacement and the residuals are plotted in 
Fig. 14, and comparison of the results modelled by different unidimen-
sional constitutive laws is presented in Table 3. For Point P1, the 
displacement modelled by Modified Lomnitz law perfectly matches that 
observed by ALOS/PALSAR-1 and Sentinel-1 images (see Fig. 14(b)), 
with a correlation coefficient (R) of 0.997. Nevertheless, the laws of 
Lomnitz 1956, 1957 and Aydan et al. 2003 failed to model the 
displacement of Point P1, because Eqs. (8) and (10) cannot be converged 
when they were used to model the displacement of Point P1. Similar to 
Point P1, the law of Aydan et al. 2003 also failed to model the 
displacement of Point P3, but it can be perfectly modelled by the laws of 
Lomnitz 1956, 1957 and Modified Lomnitz (see Fig. 14(c)), with the 
correlation coefficients (R) of 0.999 and 0.996, respectively. Evidences 
from Table 3 and Fig. 14(c) suggest that the displacement modelled by 
Lomnitz 1956, 1957 is closer to InSAR observations than that modelled 
by Modified Lomnitz law, i.e., there are higher correlation coefficient 
and smaller mean of the residuals in the modelled results from Lomnitz 
1956, 1957. Moreover, from Figs.14 (b) and (c), we can see that the 
cumulative displacement of Point P1 is much larger than that of Point 
P3. During the period of January 2007 to October 2018, the temporal 
evolution of Point P1 showed an overall linear trend, whilst Point P3 was 
deforming in a non-linear trend with the logarithmically decreasing rate. 
Based on the modelled results of the unidimensional constitutive laws of 
rocks, in conjunction with the temporal evolution behaviours of Points 
P1 and P3, it can be concluded that the slope movement at Point P1 may 
be in the second stage (secondary creep), while the slope movement at 
Point P3 may be in the first stage (primary creep). The three stages of 
creep behavior of slopes can be broadly organized into two categories 
(Lu, 2015): stable feature (primary and secondary creeps) and unstable 
feature (tertiary creep). As a consequence, the results suggest that the 
Shadong landslide exhibits the stable feature currently. In addition, we 

can see from Figs. 14(d) and (e) that the maximum residual appears on 
the SAR observation on May 22, 2008 (see the red dotted ellipses). This 
finding further supports the conclusion that the 2008 Wenchuan 
earthquake resulted in a transient acceleration in landslide 
displacement. 

5.2. Performance of the proposed method for estimating the long-term 
landslide displacement 

Some researchers (Pepe et al., 2016a; Wu et al., 2020) have explored 
the use of geotechnical models to link time-gapped InSAR displacement 
time series that derived from different SAR sensors (e.g., ENVISAT and 
COSMO-SkyMed), thus estimating the long-term time series (> 10 year) 
of land settlement. The outcomes obtained in Section 5.3 clearly show 
that the long-term displacement time series of the Shadong landslide 
calculated with the proposed method can be well modelled by the uni-
dimensional constitutive laws of rocks. As there are no ground-based 
measurements of displacements, we regard the modelled displacement 
results of rocks’ unidimensional constitutive laws as references to assess 
the performance of our proposed method. Apart from the Points P1-P4 
marked in Fig. 8(c), six points (PS1-PS6) located in different areas of 
the Shadong landslide were further selected to exhibit the long-term 
displacement time series. The locations of Points PS1-PS6 are marked 
in Fig. S4, and the long-term displacement time series derived from the 
Tikhonov regularization, linear fitting and LS methods are given in 
Fig. S5. Furthermore, we exploited the unidimensional constitutive laws 
of rocks (Eqs. (8)–(9)) to model the displacement time series generated 
by Tikhonov regularization and linear fitting methods, respectively. 
Fig. S6 shows the displacement time series of Points P1-P4 and Points 
PS1-PS6 estimated from the Tikhonov regularization method (black 
squares) and rocks’ unidimensional constitutive models (blue curves), 
and Fig. S7 shows the ones estimated from the linear fitting method 
(black squares) and rocks’ unidimensional constitutive models (blue 
curves). In addition, a quantitative comparison of the modelled 
displacement results is presented in Table S1. As can be seen from 
Figs. S6 and S7, the long-term displacement time series estimated with 
the Tikhonov regularization method overall outperform those estimated 
with the linear fitting method, in which the rocks’ unidimensional 
constitutive laws modelled the displacement time series of each point 
estimated from the Tikhonov regularization method very well. In 
contrast, in some measurements generated by the linear fitting method, 
such as Points P4 and PS2 in Fig. S7, the rocks’ unidimensional consti-
tutive laws did not model the displacement time series very well. 
Moreover, from the standard deviations (STDs) of the residuals (calcu-
lated by subtracting the modelled values from the InSAR measured 
values) listed in Table S1, we can see that the STDs of the Tikhonov 
regularization method are generally smaller than those of the linear 
fitting method. These evidences can verify the validity of our proposed 
method to some extent. It is worth to specify that, the unidimensional 
constitutive laws presented in Eqs. (8)–(9) were developed under the 
natural movement state of the rocks (Aydan et al., 2014), i.e., there is no 
intense and sudden disturbances from external environmental factors 
such as strong earthquakes. Similarly, our method is suitable for 
retrieving the long-term displacements of slopes which are moving 
naturally under the effect of gravity. However, the generated results 

Table 3 
Comparison of the results modelled by different unidimensional constitutive laws.  

Points Models/Laws Convergence of the solution R Mean of residuals (mm) Standard deviation of residuals (mm) 

P1 Lomnitz 1956, 1957 No – – – 
Modified Lomnitz law Yes 0.997 18.8305 18.6 
Aydan et al. 2003 No – – – 

P3 Lomnitz 1956, 1957 Yes 0.999 4.8357 6.5 
Modified Lomnitz law Yes 0.996 7.0208 6.1 
Aydan et al. 2003 No – – –  

X. Liu et al.                                                                                                                                                                                                                                      



Remote Sensing of Environment 267 (2021) 112745

17

may be biased in the case that the landslides exhibit strong non-linear 
movement trends or transient acceleration displacement signals 
caused by periodic strong rainfall or strong earthquake events. 

5.3. Possible driving factors for the landslide displacement 

Gravity is usually the primary driving factor for landslide displace-
ment. In addition, several external environmental factors can contribute 
to the acceleration of landslide displacement, such as heavy precipita-
tion, groundwater and river level fluctuations, and earthquakes. To 
investigate the possible driving factors for landslide displacement in this 
case, we selected six points (Points P5–P10) located in different regions 
of four massive landslides to analyze the correlations between 
displacement and environmental factors. Fig. 15(a) shows an optical 
image of four massive landslides and six locations, and the optical im-
ages of these landslides are enlarged in Fig. S8 to clearly show evidences 

of their activity. The analysis of the optical images reveals that there 
have been cracks, collapses and scarps developed on the surface of these 
slopes. Points P5, P7, and P9 are located near the intersection of the 
slope and the watercourse of the Jinsha River, and Points P6, P8, and 
P10 are located far away from the Jinsha River. Figs. 15(b)–(g) show the 
2D displacement time series in the east-west and vertical directions of 
Points P5–P10 and the monthly precipitation in the study area. 

Fig. 15 demonstrates that heavy precipitation mainly occurred from 
June to September each year (i.e., in the summer) in the study area. In 
particular, the number of days with rainfall during this period was much 
greater than in other periods. Heavy precipitation may have accelerated 
the displacement of landslides in two ways. First, the stability of the 
landslide may have been directly reduced, that is, regional increases in 
the duration, intensity and amount of rainfall can generate elevated 
pore-water pressures of the slope, thus resulting in a decrease in the 
shearing strength of the soil and an increase in displacement 

Fig. 15. Plots of 2D displacement time series of typical landslides versus monthly precipitation. (a) Optical image of the selected typical landslides, where the red 
lines are the boundary of the landslides, and the green circles indicate the locations of Points P5–P10; (b) P5; (c) P6; (d) P7; (e) P8; (f) P9; (g) P10; and (h) weekly 
precipitation in the Xiluodu reservoir area of the Jinsha River versus actual water level of the Jinsha River. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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(Handwerger et al., 2019). Second, the displacement of landslides may 
be indirectly accelerated as follows: periodic rainfall generally causes 
fluctuations in the Jinsha River water level, which reduces shear stress 
in the foot of the landslide and further decreases the safety factor (FS); 
this increases its instability (Shi et al., 2015; Lacroix et al., 2020). As 
shown in Fig. 15, the landslide displacements at Points P5, P7, and P9 
showed a strong correlation with monthly precipitation, while there was 
a weak correlation at Points P6, P8, and P10, where the landslides 
exhibited a linear evolution trend. The landslide displacements in 
Figs. 15(b), (d), and (f) can be further segmented into three major stages 
annually by visual interpretation, as indicated by the blue dashed rect-
angles. First, the landslide was in a stable state (Stage I), with very little 
precipitation from December 2016 to February 2017. It then began to 
deform along with small rainfall from March to May 2017. In particular, 
significant acceleration (Stage II) was observed, accompanied by heavy 
rainfall from June to August 2017, with a maximum monthly precipi-
tation of 154 mm in June. A particular displacement evolution of the 
landslide was detected from August to December 2017, that is, the 
landslides exhibited a stable state during this period; however, the study 
area was still in the rainy season, with a monthly precipitation of 
approximately 111 mm. A notable acceleration of landslide displace-
ment (Stage III) was also observed from September to December 2017. 
Furthermore, the displacement accelerated again (see the black dashed 
rectangles in Figs. 15(b), (d), and (f)) along with the emergence of strong 
precipitation in the summer of 2018. From the results of the correlation 
analysis between precipitation and water level changes in the Jinsha 
River as shown in Fig. 15(h), we can observe that there is a strong 
correlation between the water level changes in the Jinsha River and 
precipitation. That is, a sharp rise (see A marked in Fig. 15(h)) in the 
water level of the Jinsha River resulted from heavy rainfall and quick 
declines (see B marked in Fig. 15(h)) were observed with the decrease in 
rainfall. These findings suggest that the non-linear movement behavior 
of the landslide at Points P5, P7 and P9 is likely caused by the water level 
fluctuations resulted from periodic heavy rainfall. Thus, we infer that 
the fluctuation of river water level is one of the major driving factors of 
landslide activity in the study area. 

6. Conclusions 

We presented a new approach for fusing C- and L-band SAR images to 
retrieve the 3D and long-term (nearly 12 years) displacement time series 
of landslides. Its performance was tested and validated by landslides 
over the Jinsha River in Gongjue County, China. The spatial distribution 
and spatiotemporal displacement patterns of landslides were retrieved 
using four SAR datasets of L-band ascending ALOS/PALSAR-1, C-band 
descending ENVISAT, and C-band ascending and descending Sentinel-1 
acquired from January 2007 to November 2018. Moreover, the kine-
matic evolution and possible driving factors of landslide displacements 
were analyzed and discussed. Several conclusions can be drawn as 
follows: 

First, 13 active landslides with diverse dimensions were detected and 
mapped with a total coverage of approximately 176 km2, seven of which 
were larger than 2 km in either length or width. The two-dimensional 
displacement results revealed that the detected landslides had the 
different spatiotemporal displacement patterns and movement di-
rections, which were strongly correlated with the geomorphological 
features of the slopes. In particular, the heterogeneous displacement 
pattern and movement direction of each block of the Shadong landslide 
were identified using 3D displacement rates and time series. 

Second, nearly 12 years of displacement time series of the Shadong 
landslide were first retrieved by linking L-band ALOS/PALSAR-1 and C- 
band Sentinel-1 SAR images based on the Tikhonov regularization (TR) 
method. The experimental results indicated that the largest cumulative 
displacement of the Shadong landslide reached − 1.33 m in the sliding 
direction from January 2007 to October 2018, and the kinematic evo-
lution and creep behavior of the Shadong landslide were investigated 

using rock’s unidimensional constitutive laws of Lomnitz 1956, 1957, 
Modified Lomnitz, and Aydan et al. 2003. The displacement observed by 
InSAR data fit well with that modelled by unidimensional constitutive 
laws. Therefore, we can conclude that the Shadong landslide may have 
been in the primary and secondary creep stages. 

Third, the 2D nonlinear displacement time series were captured on 
the landslides near the Jinsha River, which corresponded directly to the 
river water level fluctuations that were caused by seasonal heavy rain-
fall. Consequently, the river water level fluctuations can be inferred as 
one of the major driving factors of landslide displacement. 
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