
ABSTRACT.—Two sinkholes in Wink, Texas (Wink Sinks #1, #2), collapsed in
1980 and 2002, respectively. The area where the sinkholes are located in Winkler
County, west Texas, is underlain by thick salt beds at depth of about ∼400 m.
Anthropogenic activities related to oil and water production have been considered
as a primary cause of the sinkhole development and creation. Previous studies have
suggested that poor wellbore management, which failed to prevent the intrusion of
freshwater and/or unsaturated saltwater into soluble rocks, resulted in the cavity
formation, roof failure, and successive upward cavity migration. Interferometric
synthetic aperture radar (InSAR) measurements using Advanced Land Observation
Satellite Phased Array type L-band Synthetic Aperture Radar and TerraSAR-X
images during 2007–2011 and 2015–2016 revealed fine spatial details about the
progression of the existing sinkholes and neighboring regions. The immediate
vicinities of both existing sinkholes are still subsiding, albeit at a decreasing
rate, from ∼18 cm/yr in 2011 to about ∼8 cm/yr in 2016, possibly because of
the gradual deposit of the debris from overlying rock formation into the cavity.
However, an alarming rate of subsidence can be found ∼1 km east of Wink
Sink #2. The peak subsidence rate of this area ranged from ∼40 cm/yr during
2007–2011 to more than 60 cm/yr during 2015–2016. Although the initial trigger
of the subsidence feature over the area 1 km east of Wink #2 might be similar to that
of Wink Sinks #1 and #2 (i.e., poor borehole management, water-flooding opera-
tions in a karst environment), the recent expansion and accelerated subsidence may
be attributed to the severe drought in 2011. Continuous monitoring of the subsi-
dence in the broader vicinity of the Wink sinkholes is needed for preventing future
catastrophic outcomes of long-term developing geohazards to the area’s oil produc-
tion facilities, infrastructure, and human safety.

INTRODUCTION

Sinkholes, depressions or holes caused by collapse of
land surface, are a major geohazard in karst environ-
ments worldwide (Beck and Pearson, 1995; Johnson
and Neal, 2003; Gutiérrez and others, 2014). Sinkholes
are generally formed when evaporite, carbonate, or gyp-
sum rocks in karst terrains dissolve because of chemical
or other processes that result in the development of
underground cavities, failures of overlying sediments/
rocks, upward cavity migration, and surface depression
and collapses.

Well-known sinkholes in the world can be found over
the coasts of the Dead Sea, northeastern Spain, the Neth-
erlands, and North America (e.g., Baer and others, 2002;
Galve and others, 2009; Chang and Hanssen, 2014;
Paine and others, 2012; Jones and Blom, 2014; Kim

and others, 2016; Kim and Lu, 2018). In the United
States, 48 out of 50 states have karst terrains with
most of the damaging sinkholes located along the Gulf
Coast states including Texas, Louisiana, and Florida,
among others (Kuniansky and others, 2016).

Sinkholes can be induced by both natural processes
and anthropogenic activities. Recent studies provided
evidence that the vast majority of newly formed sink-
holes are of anthropogenic origins, including aquifer
exploitation and mining dewatering resulting in water
level decline, water impoundment and injection, and
vegetation removal among others (Waltham and others,
2005; Kim and others, 2019). Impacts caused by sink-
hole activities include economic losses and damage to
infrastructure (Kuniansky and others, 2016). Because
of the increasing demand forwater and energy resources,
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it is anticipated that negative effects of sinkhole hazards
will grow in the future.

Two cover-collapse sinkholes, namelyWink Sinks #1
and #2, in west Texas, collapsed in 1980 and 2002,
respectively (Figure 1). These two sinkholes are located
in a region underlain by the Salado Formation on the
eastern edge of the Delaware Basin. Wink Sink #1 was
created on 3 June 1980 and enveloped an abandoned
plugged oil well that produced oil from 1928 to 1951 and
became inactive after 1964. Wink Sink #2, formed on
21 May 2002, centered on a water-supply well. Past in-
vestigations suggest these two sinkhole collapses were
associatedwith intense hydrocarbon drilling and produc-
tion activities in the Hendrick oilfield that caused the salt
dissolution, cavity formation, roof failure, upward cavity
migration, and surface collapse (Johnson and others,
2003; Johnson, 2005; Kim and others, 2019).

Here we report on the evolution of the ground surface
deformation over the area including and surrounding

both Wink sinkholes using radar remote sensing images
acquired by satellites during 2007 to 2011 and 2015 to
2016. Our goal is to assess the state of the ground surface
subsidence over this sinkhole-prone area using high-
spatial-resolution satellite observations, which provides
a scientific basis for the need to mitigate potential sink-
hole hazards.

DATA AND ANALYSIS

SAR and InSAR data

Interferometric synthetic aperture radar (InSAR)
combines two or more synthetic aperture radar (SAR)
images of the same imaging geometry from the same
area to produce an interferogram (a.k.a. InSAR image)
(e.g., Massonnet and others, 1993; Zebker and others,
1994; Rosen and others, 2000; Hanssen, 2001; Lu and
Dzurisin, 2014). The interferometric phase, after the
correction of topographic effect with the aid of a digital

Figure 1. Location ofWink sinkholes nearWink inwest Texas.Wink Sink #1, created in 1980, is located∼1.5 kmnorth
ofWink Sink #2, which formed in 2002.Wink Sinks #1 and #2 have a dimension of 80m× 110m and 200m×250m,
respectively.
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elevation model, presents the range (the distance from
the satellite to ground) change that includes subtle
ground deformation and atmosphere artifacts and other
noise. InSAR data, combined with geophysical model-
ing, have been used to characterize geohazards associ-
ated with volcanoes, landslides, earthquakes, and land
subsidence among others (Lu and others, 2010). To im-
prove the precision of InSAR measurements, multitem-
poral InSAR images are needed to obtain high temporal
coherence and reduce atmospheric artifacts through
time-series InSAR processing (e.g., Ferretti and others,
2001; 2011; Hooper and others, 2004; Lu and Zhang,
2014; Qu and others, 2015).

Two data sets are used in this report: L-band (wave-
length of∼24 cm) Advanced Land Observation Satellite
(ALOS) Phased Array type L-band Synthetic Aperture
Radar images acquired from January 2007 to January
2011 by the JapanAerospace ExplorationAgency(JAXA)
and X-band (wavelength 3.1 cm) high-resolution
TerraSAR-X images acquired from October 2015 to
March 2016 by the German Aerospace Center (DLR).
The detailed characteristics of these SAR images can
be found in Lu and Zhang (2014). The ALOS
stripmap-mode SAR images have spatial resolutions of
10 to 20 m, whereas the TerraSAR-X spotlight-mode

images used in this study have a spatial resolution of
∼25 cm. The mean deformation rate from each satellite
data set is obtained by stacking multiple coherent inter-
ferograms (Kwoun and others, 2006). As the observed
ground deformation associated with sinkhole develop-
ment is dominated by the vertical displacement (Kim
and Lu, 2018), we convert the line-of-sight deformation
into the vertical displacement to facilitate the evaluation
of the evolution of the observed deformation.

Observed deformation

Based on the average subsidence rate map from
ALOS data during 2007 to 2011, we can identify several
subsidence cones (Figure 2). The first feature is the sub-
sidence radiating about 600-m outward fromWink Sink
#1. The subsidence peaks at a rate of ∼12 cm/yr, located
about ∼100 m to the west of Wink Sink #1 (Figure 2).
The second subsidence feature of an ellipsoid shape
(500 m × 400 m in dimension) can be identified about
∼500 m to the north of Wink Sink #2, with a peak subsi-
dence of ∼18 cm/yr (Figure 2). The third and the most
prominent subsidence feature is located about 1 km
east of Wink Sink #2. It resembles a tooth rotated side-
way: the subsidence at the south peak, about 200 m
northwest of the intersection of county roads 201 and

Figure 2. Average subsidence ratemap fromALOS PALSAR images from January 2007 to January 2011. Contour lines
are drawn at intervals of 2 cm/yr.
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204, was about 40 cm/yr, whereas it was 35 cm/yr at the
north peak (Figure 2).

The subsidence rate map for 2015 to 2016 from
TerrraSAR-X images shows that the three subsidence
features as seen during 2007 to 2011 changed over
time to some degree (Figure 3). The subsidence rates
at the first feature (i.e., near Wink Sink #1) and the sec-
ond feature (north ofWink Sink #2) reduced to 4 and 4–8
cm/yr, respectively (Figure 3), and the extents of subsi-
dence also shrank. However, the third and most promi-
nent feature about 1 km east of Wink Sink #2 changed
significantly. Therewere two distinct subsidence troughs
in 2015 to 2016. The subsidence rate over the north peak
reduced to about 26 cm/yr, whereas it increased to more
than 60 cm/yr over the south peak located on county road
201, about 100 m west of the intersection of the county
roads 201 and 204 (Figure 3). It is obvious the peak sub-
sidence increased inmagnitude from 2011 to 2015–2016
and that the location of the peak subsidence migrated
southward.

DISCUSSION AND CONCLUSION

The subsidence observed near the existing Wink
Sinks #1 and #2 suggests the underground cavity around
each was continuously filled with debris from upper

formations. This void filling process, called a suffusion,
produced continuous surface subsidence over the newly
formed sinkholes in the early stage of each sinkhole’s
collapse (Waltham and others, 2005; Kim and others,
2019). The subsidence rates and dimensions surrounding
Wink Sinks #1 and #2 reduced over time, suggesting the
two existing sinkholes stabilized as a consequence of
nearly fully filled cavities (Waltham and others, 2005;
Kim and others, 2019).

The double-peak subsidence feature about 1 km east
of Wink Sink #2 manifests as alarming sinkholes under
development, with the peak subsidence reaching more
than 60 cm/yr during 2015 to 2016 near the intersection
of county roads 201 and 204. The triggering mechanism
for the observed subsidence has also been attributed to
dissolution of the Salado Formation around ∼400 m
deep, similar to the cause of collapses at Wink Sinks
#1 and #2 (Paine and others, 2012; Kim and others,
2016, 2019). There were numerous water wells and
hydrocarbon-production wells, most of which have
been inactive and abandoned. Inappropriate borehole
management, as judged by current more stringent stand-
ards, could initiate the freshwater contact of the Salado
layer through unplugged boreholes, corroded pipes, or
leaked casing and other engineering issues (Paine and

Figure 3. Average subsidence rate map from TerraSAR-X images from October 2015 to March 2016. Contour lines
are drawn at intervals of 2 cm/yr.
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others, 2012; Kim and others, 2016, 2019). In addition,
intensive water-flooding operations were used in this
area for several decades from the 1970s to the 2000s
(Kim and others, 2019), which could act as an important
contributor to the rapid subsidence. Fractures in the aqui-
fer and formations surrounding the salt layer created by
pressurized fluid injection and long-term hydrocarbon
production could have allowed freshwater to intrude
into the Salado Formation, initiating the dissolution
process (Kim and others, 2019). The accelerated salt dis-
solution could cause cavity formation, upward migra-
tion, and the ground surface subsidence. Therefore, we
believe the combined effects of improper borehole man-
agement andmassive water production were responsible
for the development of the subsidence feature east of
Wink Sink #2.

Inspecting the deformation over the double-peak sub-
sidence feature east of Wink Sink #2 suggests that not
only did the rate of peak subsidence increase, but that
the extent of the subsidence also expanded from
2007–2011 to 2015–2016 (Figures 2 and 3). For exam-
ple, the peak subsiding area was contained to the north of
county road 201 in 2007–2011, but expanded further
south of county road 201 in 2015 to 2016. Kim and
others (2019) attributed the accelerated subsidence at
the developing sinkholes to a combination of human-
induced (hydrocarbon and water flooding, etc.) and
natural perturbations (droughts) in the subsurface sur-
rounding the Salado layer. In fact, a severe drought hit
the area in 2011, which was the worst in the past 30 yr
in Texas (Kim and others, 2019). Because of decadal
water-flooding operations that caused fractures in the
formations surrounding the Salado Formation along
with those formed during borehole drilling and realign-
ment (Heithecker, 1932; Adams, 1944; Baumgardner and
others, 1982; Johnson, 1989; Kim and others, 2019), the
area already possessed awell-developed fracture system.
The 2011 drought lowered groundwater levels, which in
turn added overburden stress, and further compounded
sinkhole development vulnerability. The increased
effective stress and internal erosion in the overlying
layers can result in more rapid downward percolation
of freshwater in aquifer systems into the underlying
salt beds, causing the acceleration of the salt dissolution
and surface/subsurface subsidence (Linares and others,
2017; Kim and others, 2019). Although the double-
peak subsidence feature has not yet resulted in a collapse
as witnessed at Wink Sinks #1 and #2, the accelerated
subsidence represents a significant potential geohazard
in the area. Hence, continuous monitoring of the subsi-
dence in the vicinity of theWink sinkholes using satellite
InSAR or other ground-based instruments is urgently
needed to prevent future catastrophic outcomes that
will endanger the area’s oil production facilities, critical
infrastructure, and human safety.
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