
 
 

 

 
Remote Sens. 2021, 13, 2144. https://doi.org/10.3390/rs13112144 www.mdpi.com/journal/remotesensing 

Article 

Analysis of Groundwater Depletion/Inflation and  
Freeze–Thaw Cycles in the Northern Urumqi Region with the 
SBAS Technique and an Adjusted Network of Interferograms 
Baohang Wang 1, Qin Zhang 1,*, Antonio Pepe 2, Pietro Mastro 3, Chaoying Zhao 1, Zhong Lu 4, Wu Zhu 1,  
Chengsheng Yang 1 and Jing Zhang 1 

1 School of Geology Engineering and Geomatics, Chang’an University, Xi’an 710054, China;  
wangbaohang@chd.edu.cn (B.W.); cyzhao@chd.edu.cn (C.Z.); zhuwu@chd.edu.cn (W.Z.);  
yangchengsheng@chd.edu.cn (C.Y.); racheljing@chd.edu.cn (J.Z.) 

2 National Research Council of Italy, Institute for the Electromagnetic Sensing of the Environment  
(CNR-IREA), 80124 Napoli, Italy; pepe.a@irea.cnr.it 

3 School of Engineering, University of Basilicata, 85100 Potenza, Italy; pietro.mastro@unibas.it 
4 Roy M. Huffington Department of Earth Sciences, Southern Methodist University, Dallas, TX 75275, USA;  

zhonglu@mail.smu.edu 
* Correspondence: dczhangq@chd.edu.cn; Tel.: +86-29-8233-9261 

Abstract: This work investigated the large-scale ground deformations threatening the Northern 
Urumqi district, China, which are connected to groundwater exploitation and the seasonal freeze–
thaw cycles that characterize this frozen region. Ground deformations can be well captured by sat-
ellite data using a multi-temporal interferometric synthetic aperture radar (Mt-InSAR) approach. 
The accuracy of the achievable ground deformation products (e.g., mean displacement time series 
and related ground displacement time series) critically depends on the number and quality of the 
selected interferograms. This paper presents a straightforward interferogram selection algorithm 
that can be applied to identify an optimal network of small baseline (SB) interferograms. The se-
lected SB interferograms are then used to produce ground deformation products using the well-
known small baseline subset (SBAS) Mt-InSAR algorithm. The developed interferogram selection 
algorithm (ISA) permits the selection of the group of SB data pairs that minimize the relative error 
of the mean ground deformation velocity. Experiments were carried out using a group of 102 Sen-
tinel-1B SAR data collected from 12 April 2017 to 29 October 2020. This research study shows that 
the investigated farmland region is characterized by a maximum ground deformation rate of about 
120 mm/year. Periodic groundwater overexploitation, coupled with irrigation and freeze–thaw 
phases, is also responsible for seasonal (one-year) ground displacement signals, with oscillation 
amplitudes up to 120 mm in the zones of maximum displacement. 
 

Keywords: InSAR; small baseline; seasonal ground deformation; linear deformation; irrigated farm-
lands; reservoir safety; groundwater exploitation; freeze–thaw 
 

1. Introduction 
The study of the Earth’s surface displacements through differential SAR interferom-

etry represents a consolidated practice [1–4] at present. In this framework, the last few 
decades have seen the flourishing of several multi-temporal InSAR (Mt-InSAR) algo-
rithms for the generation of ground displacement time series [5–20]. They can be broadly 
grouped into two main categories: persistent scatterer (PS) and small baseline (SB) meth-
odologies. The former contains algorithms and tools based on the analysis of pointwise, 
highly reflective objects (e.g., human-made infrastructures in urban areas) that preserve 
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high coherence and phase stability even in large temporal and perpendicular baseline SAR 
data pairs. The techniques in the latter category are primarily devoted to analyzing 
ground displacement related to distributed scatterers (DSs) on the terrain. DS targets are 
distributed over multiple resolution cells and are characterized by varying coherence and 
phase stability. Accordingly, DSs are more prone to phase decorrelation effects [10], espe-
cially when the interferometric SAR data pairs have long spatial and temporal baselines. 
The correct identification of DSs is required, and several techniques are currently available 
in the literature [19,20]. More recently, new methods for the identification and processing 
of statistically homogenous pixels (SHPs), based on the use of maximum likelihood (ML) 
estimators, have also been developed [13–17]. Moreover, some scholars have also pre-
sented hybrid Mt-InSAR techniques that jointly analyze PS and DS target ground defor-
mations (e.g., [18]). 

Mt-InSAR techniques [21–23] have successfully been applied to monitor the Earth’s 
ground deformations due to several causes (e.g., earthquakes, volcanoes, landslides and 
land subsidence). In this context, permafrost regions have also been the subject of several 
investigations. In particular, ground displacements of permafrost areas have been exten-
sively studied in the North Slope of Alaska [24] and Herschel Island, Canada [25]. Large-
scale permafrost freeze–thaw ground deformations were also mapped on the Tibetan Plat-
eau using InSAR data [26–29]. Furthermore, Mt-InSAR methods were applied to map sea-
sonal ground deformations in the high arctic permafrost environment [30], wildfire-in-
duced permafrost ground deformation in the Alaskan boreal forest [31], in Heihe, China 
[32], and to monitor low-land permafrost areas in the Arctic and Antarctic regions [33]. 
InSAR observations were used to determine the active layer thickness [34,35] and reveal 
active layer freeze–thaw and water storage dynamics in permafrost environments [36]. 

In this work, we investigate the ground deformation of the Northern Urumqi region, 
China. The presented analysis is based on applying the small baseline subset (SBAS) 
method [9]. Furthermore, we present a new method for selecting a suitable set of small 
baseline (SB) interferometric SAR data pairs to be used by the SBAS algorithm. Usually, 
the interferometric SAR data pairs are selected by merely imposing a threshold on their 
maximum allowed temporal and perpendicular baselines [9]. However, this selection 
strategy can lead to some high-quality interferograms being discarded or some low-qual-
ity ones being included in actual cases. Some approaches for selecting optimal sets of SB 
interferograms have already been proposed in the literature [37–43]. In particular, the 
minimum spanning tree (MST) algorithm was used to determine a set of optimized inter-
ferograms using a quasi-PS (QPS) method in [37,38]. The use of a simulated annealing 
algorithm was proposed in [39] for the optimal selection of a triangular network of SB 
interferograms that were exploited by the space–time minimum cost flow (EMCF) phase 
unwrapping algorithm [40]. Graph theory (GT) and a variance–covariance matrix of ob-
servations were used in [41] to identify sets of interferograms less influenced by turbulent 
atmosphere phase artifacts. The semiautomatic selection of optimum image pairs was also 
proposed in [42], using the coherence of point targets based on a small feature region. A 
higher coherence pixel density of interferograms through eigenvalue decomposition was 
introduced in [43]. 

The SB interferometric selection algorithm proposed in this work was aimed at se-
lecting SB interferograms that would minimize the mean ground deformation velocity 
relative error. Toward that aim, the average spatial coherence of the chosen interfero-
grams and the connectivity of their network were taken into account at the same time. 
Our work benefits from the primary outcomes of a recent investigation [44] that addressed 
the error budget analysis of SB Mt-InSAR techniques. 

Experiments were carried out on 102 pieces of Sentinel-1B SAR data collected from 
12 April 2017 to 29 October 2020. Starting from the available SAR data, a group of optimal 
SB interferograms was adequately selected and used within the SBAS processing. As a 
result, in the region of maximum deformation, we revealed a ground subsidence velocity 
of about 120 mm/year and seasonal amplitude displacement of about 120 mm. 
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This paper is organized as follows: Section 2 describes the methods used in this re-
search study. Section 3 illustrates the study area. Experimental results are shown in Sec-
tion 4. Finally, discussions and conclusions are given in Section 5 and Section 6, respec-
tively. 

2. Methodology 
This section summarizes the rationale of the SBAS methodology [9] and describes the 

novel interferometric SAR data pair selection algorithm. 

2.1. Rationale of the SBAS Method 
Let us consider a group of N SAR images acquired at chronologically ordered times 

[ ]0 1 1, ,..., T
Nt t t − , from which a set of M small baseline (SB) interferometric SAR data pairs 

is selected. Once selected, a group of optimized M SB multi-look interferograms is gener-
ated and unwrapped. Let ( )0 1 -1

[ , , , ]SB
SB SB SB T

M
ψ ψ ψΔ = Δ Δ Δ(SB) ψ  be the vector of the un-

wrapped phases related to a generic coherent SAR pixel. The ground displacement time 
series are obtained by solving the following system of linear equations [9]: 

 ⋅ = Δ (SB)B v ψ  (1) 

where B is the design matrix of the involved linear transformation (see [9] for the mathe-
matical expression of matrix B), and V is the vector  

1 0 12 1
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v , whose (unknown) elements represent the 

ground velocity estimates between consecutive time acquisitions. Note that  

0 1 1[ , ,..., ]TNφ φ φ −Φ =  is the vector of the (unknown) phases (i.e., the phase time series) 
related to every available SAR acquisition. Once estimated, the elements of vector are 
time-integrated, and phase Φ   is retrieved. The residual topographic errors and the at-
mospheric phase screen (APS) are finally estimated and compensated to obtain the 
ground displacement time series [9]. After the SBAS inversion, the quality of the recon-
structed ground deformation time series can be checked by calculating the value of the 
temporal coherence factor [40]. The temporal coherence depends on the phase residuals 

= ⋅ − Δ (SB)ψˆR B v  of the LS problem of Equation (1) and is defined as follows: 

 [ ]
1

0

1 exp
M

i
i

jR
M

-

=

W= å  (2) 

Finally, a group of well-processed, highly coherent SAR np pixels, characterized by 
values of temporal coherence larger than a given threshold, is identified. 

2.2. SBAS Deformation Measurement Accuracy 
A recent work [44] comprehensively addressed, from the theoretical perspective, the 

problem of deriving some bounds for the relative errors of Mt-InSAR SB products. In par-
ticular, using the basic principles of perturbation and error propagation theory [45–47], it 
has been shown that the expected relative error  of the computed vector v̂  (i.e., the 
solution of the least-squares problem of Equation (1)) is given by: 

 ε ε η ε
η

−  ≤ ⋅ + ⋅ + 
 

2 22

2

ˆ 2 ( )= tan ( ) ( )
cosv
k k O

v v B B
v

 (3) 

where v  is the vector of the actual (unknown) velocities among consecutive time acqui-
sitions;  is the condition number of the matrix design B, which can be calculated as  

0 min( )k σ σ=B , where 0σ  and minσ are the largest and smallest non-zero singular values 

v

vε

( )k B
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of matrix B. Additionally, 
( ) ( )

2
( )

2
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e

DY -DY
=

DY
 is the relative error of the SB un-

wrapped phases, where ( ) 4SB dp lDY = ,  [ ]0 1 1, ,..., T
Md d dd -=  is the vector of ground de-

formations related to the M selected interferometric SAR data pairs, and  λ  is the oper-

ational wavelength. Moreover,  ( ){ }2 2
arcsin SBRh= DY , where  = ⋅ − Δ (SB)ψˆR B v  is 

the vector of the least-squares (LS) residuals. Note that  
2X  is the two-norm of the ge-

neric ( )1Q×   0 1 1, ,...,
T

Qx x x − =  X  vector, which is given by  ( )
1
2

2
TE = ⋅ X X X . 

2.3. Optimal SB Data Pair Selection 
This subsection presents a straightforward algorithm for the automatic selection of a 

reliable group of SB SAR data pairs to be used within the SBAS algorithm. The algorithm 
does not simply impose some fixed thresholds on the temporal and perpendicular base-
lines of the data pairs. Instead, it directly analyzes the average coherence of the generated 
interferograms and considers the characteristics of the selected network of SB interfero-
grams to identify the network that allows minimizing the (expected) relative error of the 
ground deformation velocity. In particular, for the SBAS case, Equation (3) shows that the 
relative error of vector V depends on the noise corrupting the set of SB unwrapped inter-
ferograms, which is determined by the relative error of the exploited unwrapped interfer-
ograms and the condition number of the matrix design B. For the sake of simplicity, the 
adopted strategy assumes the idealized case in which no significant phase unwrapping 
errors (and other spurious time inconsistencies) are present. Accordingly, the norm of the 
LS residuals is minimal. Under this hypothesis, we can suitably assume that 0h@ , and 
the error bound of Equation (3) is particularized as: 

( )ε ε≤ 2v k B  (4) 

Under the validity of the Cramér–Rao bound for the variance of the SB interfero-
grams [48], the relative error of the unwrapped (multi-look) interferograms can be ap-
proximated with: 
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where [ ]0 1 1, ,..., T
Mg g g -G =  is the vector of the (average) coherence value of the used M 

SB SAR data pairs, and  is the look number. By substituting Equation (5) into Equation 
(4), we get: 
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where the term 
2
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=  depends on the system parameters and the ground de-

formation norm, whereas the term 
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å  accounts for the average coherence 

of the SB interferograms. Note that the norm of the (true) ground deformation does not 
depend (at most) on the selected SB interferograms but is a specific parameter of the 

L
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investigated area. Thus, the developed interferogram selection algorithm (ISA) focuses on 
minimizing the term ( )k Bb ⋅ . 

The ISA method consists of 3 distinctive steps to determine the optimal set of SB in-
terferograms, which is briefly summarized as follows: 

I. Generate a pool of (candidate) multi-look SB interferograms and the relevant coher-
ence maps. Candidate SB data pairs are initially selected by considering a reasonably 
large threshold for the temporal and perpendicular baselines of the interferograms. 

II. Estimate the optimal value of a coherence threshold, namely γ critical , which is the co-
herence threshold that allows minimizing the term ( )k Bb ⋅  given the selected set of 
SB interferograms. When a given multi-look SAR interferogram has an average spatial 
coherence smaller than γ critical , it is discarded from the subsequent analyses. 

III. Apply the SBAS procedure [9] to the selected set of optimal SB SAR data pairs, se-
lected using the optimal coherence threshold γ critical . 

A block diagram of the developed ISA is shown in Figure 1. 

 
Figure 1. Flowchart of developed SB interferogram selection algorithm. 

3. Case Study Area 
Northern Urumqi, China, is located between the Tianshan Mountains and the 

Gurbantunggut Desert (Figure 2). The average altitude is about 500 m. The area belongs 
to the middle temperate continental arid region, characterized by long winter and sum-
mer seasons [49]. In particular, during winter, from the middle of October to the middle 
of the following March, the temperature is usually constantly below 0 °C. More than 50 
rivers originate in the north of the Tianshan Mountains, supplied by snow cover and melt-
ing glaciers. The annual average runoff can reach 82.7947 × 108 m3 [50]. Dense rivers form 
a large arid alluvial plain in the north of the Tianshan Mountains and gradually develop 
into typical irrigation agriculture under human activity. 
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Figure 2. Google Earth image of the Urumqi region. Study area outlined by red rectangle; rivers shown in blue and reser-
voirs indicated by green circles. Inset (top right) shows location of study area. 

Irrigated agriculture is relatively developed here, one of China’s essential grain pro-
duction bases. Moreover, since the implementation of the national policy to develop Xin-
jiang, agricultural land reached 22,330 kmଶ by 2010, accounting for about 17% of the re-
gion’s total land area [51]. The main crops include wheat, corn, melons, fruits and cotton. 
Agricultural irrigation mainly depends on groundwater and river water. The farmland 
area is primarily irrigated using river water, whereas areas far from rivers and reservoirs 
can only rely on groundwater. Many reservoirs are located in the study area, as shown in 
Figure 2. They store surface water during the rainy season and snowmelt during the 
spring season. Stored groundwater is then pumped during the summer season to facilitate 
agricultural irrigation. However, due to the limited surface runoff, groundwater demand 
has exceeded recharge capacity in agricultural production. In addition, in the permafrost 
areas, freeze–thaw deformation phenomena occurred. 

The average annual temperature of the study area is 6.7–8.9 °C; the average yearly 
precipitation is 224.28 mm, and the average annual sunshine amounts to 2671.5 h. These 
conditions create distinctive agricultural resources. There is an excellent climate for agri-
cultural development [52]. However, water consumption for agricultural irrigation is sub-
stantial, especially in dry areas. From 1988 to 2015, water consumption for irrigation in-
creased by 256%, and the water consumption of crops increased year by year [53]. The 
proportion of agricultural water consumption was 92.5% in 2017. Overexploitation of 
groundwater leads to decreased pore water pressure and land subsidence on irrigated 
farmland. 
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4. Experimental Results 
4.1. SBAS Ground Deformation Time Series Generation 

This research study exploited 102 pieces of Sentinel-1B SAR data collected from 12 
April 2017 to 29 October 2020. Table 1 summarizes the main data parameters. 

Table 1. Characteristics of Sentinel-1B SAR data used in this study. 

Sensor Sentinel-1B 
Time span 12 April 2017 to 29 October 2020 

Number of SAR images 102 
Incidence angle  39.14° 

Beam mode  IW 
Flight direction Descending 

Path 19 
Frame 444 

Pixel spacing (range × azimuth) 2.3 m × 14.9 m 

We applied the developed ISA method to the available SAR images to identify an 
optimized group of SB multi-look interferograms that the conventional SBAS technique 
has subsequently processed. To this aim, we preliminarily identified a group of “candi-
date” SB SAR data pairs characterized by the maximum temporal baseline max 90tΔ =
days, and we did not apply any constraint on the maximum perpendicular baseline of the 
interferograms. Figure 3A shows the distribution of preselected SB interferometric SAR 
data pairs in the temporal/perpendicular baseline plane. In this domain, the available SAR 
images are represented by red circles. The arcs connecting pairs of SAR data (drawn in 
blue) identify the set of candidate SB SAR data pairs. Once identified, a group of 656 SB 
multi-look interferograms was generated. 

Precise satellite orbit information and a three-arcsec digital elevation model (DEM) 
of the area from the Shuttle Radar Topography Mission (SRTM) were used to estimate 
and remove the topographic phase components. The generated interferograms were in-
dependently multi-looked (10 range–2 azimuth looks, respectively) and noise filtered with 
the use of the Goldstein filter [2] (with alpha = 0.6). Contextually, we also generated the 
corresponding coherence map for every generated differential SAR interferogram and 
computed the relevant average coherence value (over the whole imaged area). Figure 4A 
shows how the average coherence drops as the temporal baseline of the interferograms 
increases; however, because the S-1 orbital tube is narrow, there is no substantial decoher-
ence strictly related to the perpendicular baselines. 

At this stage, we applied the developed ISA method and identified the optimal set of 
SB interferograms that minimized the term ( )k Bb ⋅  (see Section 2). We note that, as the 
applied threshold on the minimum (average) spatial coherence threshg  increases, two op-
posite effects occur: (i) the multi-look interferograms are less affected by decorrelation 
artifacts, and (ii) the number of interferograms with average coherence greater than  

threshg  drops. These counteracting effects are taken into account by  b  and ( )k B , respec-
tively. Note that in the limit case, the threshold threshg  leads to the formation of two inde-
pendent sets of SB interferograms, and the condition number ( )k B  becomes infinite as 
the relative error bound (Equation (6)). In this case, unless there is a substantial time over-
lap between the two independent subsets of SAR data, the singular value decomposition 
of matrix B is exploited to solve the least-squares (LS) problem of Equation (1). 

Figure 5A,B show the plots of b  and ( )k B , respectively, as a function of the aver-
age coherence threshold. Figure 5C plots the value of ε v

 versus the average spatial co-
herence threshold threshg , highlighting that the optimal condition arises, in our specific 
case, considering an optimal coherence threshold 0.84criticalg =  (P1 in Figure 5C). In this 
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case, an adjusted/optimal network of 421 SB multi-look interferograms is determined. Fig-
ure 3B shows the distribution of the selected optimal SB interferometric SAR data pairs in 
the temporal/perpendicular baseline domain. In Figure 5C, P2 highlights the limit case 
when only one single interferogram exists to connect two subsets of SB interferograms 
(e.g., the condition number is maximum but not infinite). This condition corresponds to 

0.86threshg =  and to a group of 389 SB differential SAR interferograms in our experiment. 
Figure 4C shows the distribution of SB interferometric SAR data pairs in the temporal/per-
pendicular baseline domain for this limit case. 

 
Figure 3. Distribution of SAR data pairs in a temporal/perpendicular baseline domain. (A) Set of 
available SB InSAR data pairs estimated by imposing a maximum temporal baseline separation of 
90 days. (B) Optimal network of SB interferograms retrieved by applying the proposed InSAR 
selection algorithm. (C) Reduced network of SB interferograms at boundary condition where one 
single SB data pair exists that connects the group of interferograms to form a single set of data. 
Note that (B) and (C) refer to the condition on minimum average spatial coherence of selected 
interferograms of 0.84 (P1 in Figure 5C) and 0.86 (P2 in Figure 5C). 
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Figure 4. Scatter plot of average spatial coherence of candidate SB data pairs vs. their (A) temporal and (B) perpendicular 
baseline. 

 

Figure 5. Plots of (A) , (B) , and (C)  vs. the interferometric average spatial coherence threshold.  

Some coherence maps are shown in Figure 6. Mainly, Figure 6A,B shows the coher-
ence map of the worst interferogram (i.e., characterized by the minimum average spatial 
coherence) for the optimal case (P1 in Figure 5C) and the limit case (P2 in Figure 5C), 
respectively. Furthermore, Figure 6C shows the coherence map of the best interferogram 
for the whole selected optimal SB interferogram network, and Figure 6D shows the coher-
ence map of the worst candidate, the SB interferogram. The latter does not belong to the 
set of interferograms used for the SBAS inversion. The master and slave SAR images of 
the selected SAR data pairs are listed in the caption of Figure 6. 

 
Figure 6. Spatial coherence maps of four DInSAR SB interferograms. The worst coherence images related to selected opti-
mal set of SB interferograms (P1 condition, Figure 5C) and limit case (P2 condition, Figure 5C), respectively: (A) the co-
herence map of 18 February 2018 to 26 March 2019 InSAR data pair (average coherence 0.84) and (B) the coherence map 
of 2 November 2017 to 25 January 2018 (average coherence 0.86). (C) The best coherence map as a whole related to the 20 
January 2019 to 1 February 2019 InSAR data pair (average spatial coherence 0.99). (D) The worst coherence map as a whole 
in the set of candidate SB InSAR data pairs related to the 13 February 2019 to 8 May 2019 InSAR data pair (average spatial 
coherence 0.28). Although (D) is related to an SB InSAR data pair, it must be discarded to enhance the quality of ground 
deformation products. 
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Starting from the optimized set of 421 SB interferometric SAR data pairs shown in 
Figure 3B, we applied to the relevant multi-look differential interferograms the conven-
tional SBAS-InSAR processing in the implementation provided in the StaMPs software 
package [18] to generate the ground deformation time series related to stable DS targets. 
The DS target locations were identified by the phase stability analysis [18] provided in the 
StaMPs software package. StaMPs implementation processing can be found in [54]. Ac-
cordingly, a group of about 3.7 million pixels was selected. Over these pixels, the phase 
unwrapping operations [55] were implemented to reconstruct the relevant (full) un-
wrapped phases. 

Multi-look unwrapped phases were inverted, pixel by pixel, using the SBAS ap-
proach, and the ground deformation time series relevant to the set of coherent SAR pixels 
were computed. To check the quality of the generated ground displacement time series, 
we calculated the values of the temporal coherence factor [40], which indirectly measures 
the probability error of the ground deformation measurements. Temporal coherence has 
been widely used in SBAS investigations [56–58] over the years, and a threshold value of 
0.7 is considered legitimate for reliable DInSAR ground deformation products. Large tem-
poral coherence values mean the ground deformation time series are consistent with the 
measured interferometric phases. 

Figure 7 shows the map of temporal coherence. Note that areas with a low temporal 
coherence value (less than 0.7) are mainly concentrated on the mountains (the lower right 
corner). Accordingly, these areas were excluded from subsequent analyses. Figure 8A 
shows the map of ground mean deformation velocity of the investigated area over well-
processed radar pixels. Six points, labeled A–E in Figure 8A, were identified in the studied 
region, whose relevant ground displacement time series are shown in Figure 9. They show 
that ground deformation time series over the investigated area contain a linear component 
in time (subsidence), superimposed with a nonlinear seasonal component over an approx-
imately one-year period. 

 
Figure 7. Map of temporal coherence. 
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Figure 8. (A) Mean deformation velocity map of the Urumqi area. (B) Map showing the seasonal deformation amplitude 
values. Pixels labeled A–F are related to the deformation time series shown in Figure 9. The black star indicates the location 
of reference point, where deformation is assumed to equal zero. Black dotted lines indicate a rectangular area where a test 
on ISA effectiveness was carried out. Only SAR pixels with temporal coherence values larger than 0.7 are shown. 

To further check the reliability of the obtained SBAS-driven ground deformation re-
sults and to prove the effectiveness of the developed ISA, we also generated, using the 
SBAS technique, the ground deformation time series of the area using the networks of SB 
interferograms shown in Figure 3A,C, consisting of 656 and 389 SB multi-look interfero-
grams, respectively, the use of which corresponds to the use of “candidate” SB interfero-
grams (A) and the set of interferograms at the limit case. The three generated families of 
ground displacement time series were jointly analyzed to infer their accuracy. Unfortu-
nately, there is a lack of external, freely available GPS/leveling measurements for valida-
tion purposes. 



Remote Sens. 2021, 13, 2144 12 of 19 
 

 

 
Figure 9. Deformation, temperature and rainfall time series comparison at six points, A–F (as described in Figure 8). The 
first line is a rainfall and temperature time series. (A–F) deformation including observation, linear and seasonal defor-
mation time series, respectively. Vertical dotted black and green lines show the inflection points of seasonal term defor-
mation. 

To partially circumvent this problem, we adopted the following strategy. For every 
family of ground displacement time series, we extracted the relevant spatial low-pass (LP) 
and high-pass (HP) ground deformation time series (using a moving average window of 
10 × 10 pixels). Assuming that the (true) ground deformation is spatially correlated in the 
averaging box, and considering that the APS is also spatially correlated, we can reasona-
bly assume that the HP components are mainly sensitive to the decorrelation noise and 
phase unwrapping errors. Thus, an indirect measure of the accuracy of the ground dis-
placement time series could be given by the standard deviation of the HP components in 
an area of interest. Figure 10 shows a histogram of the HP standard deviation for the three 
networks of SB interferograms used in this study, as computed over a box centered 
around the location of point C (see Figure 8B). The values of the average HP standard 
deviation are 1.56, 1.29 and 1.38 mm for the three SB networks. The result of this experi-
ment shows that the selected optimal SB interferogram network leads to the generation of 
ground displacement time series that are less noisy. 
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Figure 10. Histogram of HP standard deviations for three networks of SB interferograms: candidate SB (blue), optimal SB 
(red), single-subset-limit case (green). 

We want to highlight that this experiment only obtains a preliminary assessment of 
the developed ISA. However, a reasonable quality assessment of the method would re-
quire applying it in several different working conditions. However, this is outside the 
limits of the present investigation and is a matter for future investigation. 

4.2. Analysis of Ground Deformation Signals 
Let us now focus exclusively on the ground deformation time series related to the 

optimal SB network of interferograms, shown in Figures 8 and 9. In analyzing these time 
series, first we discriminated the linear and nonlinear ground deformation components in 
time. Pixel by pixel, we estimated the linear components by simply fitting the ground 
displacements with a line. We then subtracted the linear components from the ground 
deformation time series. We provided the residues, in the LS sense, with a sinusoidal 
model, , using a least-squares sine fitting algorithm (e.g., [59]), where  
and  are the amplitude and period of oscillations. It is worth noting that more sophis-
ticated approaches, such as independent component analysis (ICA) [60–63], could also be 
applied to infer the periodical ground deformation components. Figure 8B shows, for 
every well-processed SAR pixel, the map of amplitudes of periodical (over a period of 
approximately one year) sinusoidal ground displacements. Of course, this model well fits 
the ground deformations in the farmland regions, where the deformation signals can be 
related to groundwater depletion and inflation during a period of one year. Conversely, 
the quality of fitting deteriorates in other zones of the case study area. 

The observed terrain displacement time series were also compared to temperature 
(blue lines) and rainfall (green histograms). The measured ground displacement time se-
ries were decomposed into their main components: long-term linear trend (green lines) 
and nonlinear seasonal deformation (black lines) time series. The rainfall data and tem-
perature were from [64,65]. The rainfall time series, temperature and deformation time 
series were mapped to interpret the cause of the deformation pattern. The vertical dotted 
black and green lines identify the beginning and end of the irrigation periods (approxi-
mately from April to October every year), corresponding to the peaks (uplift and subsid-
ence) of seasonal ground displacements. 

Let us now focus on the area highlighted by the rectangular black box in Figure 8B. 
Figure 11 shows a zoomed view of the Bayi Reservoir area. The reservoir was built in 1952 
with a catchment area of 15 square kilometers. Its storage capacity reaches 35 million cubic 
meters for water storage and agricultural irrigation. The west of Bayi Reservoir is a 

A
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farmland area, and the loss of groundwater causes large-scale land subsidence and threat-
ens the safety of the reservoir. Around the Bayi Reservoir, the linear deformation rate ex-
ceeds 40 mm/year (Figure 11B), and the amplitude of seasonal deformation magnitude 
reaches 120 mm/year (Figure 11C). The deformation pattern includes linear and seasonal 
deformation. The observed ground deformations represent a threat to the ecological bal-
ance and wastewater resources of the area. Figure 11D shows the ground deformation 
time series of the selected point P. We find that the magnitude of deformation, including 
seasonal and linear deformation, is low in the non-farmland area. Conversely, in the farm-
land area (between Qinggeda Lake and Bayi Reservoir), seasonal deformation is high. 

 
Figure 11. (A) Zoomed view of the optical image shown in Figure 8, corresponding to Bayi Reservoir and Qinggeda Lake. 
(B) Mean deformation velocity map. (C) Map of seasonal deformation amplitude values. (D) Plot of the ground defor-
mation time series related to point P, highlighted by a black arrow in (B). 

5. Discussion 
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In this section, we discuss our research findings by focusing on the proposed ISA 
method and the primary outcomes of the SBAS investigation in the considered case study 
area. 

One of the main achievements of our investigation was that we developed and pre-
liminarily checked the potential of a novel strategy to automatically select small baseline 
interferometric SAR data pairs that the SBAS DInSAR technique can use. The selected SB 
network is the result of a compromise, considering both the effects of the average coher-
ence of the SB interferograms and the connectivity of the resulting SB network. Too few 
interferograms might lead to SB networks that are less redundant. Thus, even minor errors 
in single multi-look interferograms, such as phase unwrapping errors, can severely cor-
rupt the generated ground deformation time series. On the other hand, too many interfer-
ograms might lead to noisier ground deformation time series due to the presence of inter-
ferograms that are more decorrelated, even using SAR data pairs with small temporal and 
perpendicular baseline separations. Phase decorrelation also magnifies the phase unwrap-
ping errors that can propagate from noisy interferograms to good interferograms due to 
the SB network redundancy. Therefore, it is mandatory to find a proper balance between 
these two distinctive effects. The proposed ISA aims to find such a balance condition. The 
optimal set of interferograms can be used to investigate surface deformations in large-
scale areas rapidly to obtain ground deformation time series. 

The results of the experiments shown in Section 4.1 (Figure 10) demonstrate that the 
accuracy of SBAS ground deformation time series improves when the optimal network of 
SB interferograms is used. We note that some assumptions were made to obtain these 
results; specifically, we assumed that ground deformations are spatially correlated. Cer-
tainly, further extended analyses are required to quantitatively assess the performance of 
the developed ISA method. 

With the results obtained from the SBAS analyses performed in the selected case 
study area, we derived ground deformation time series. We inferred the sources of ground 
deformations, discriminating long-term zone deformations (linear trend) from seasonal 
deformations related to one-year irrigation and the freeze–thaw cycles of the frozen area 
under investigation. In terms of water consumption, the study area is located between 
deserts in the north and the Tianshan Mountain in the south. 

The observed land subsidence in the farmland areas is related to irrigation methods 
and facilities related to groundwater recharge and consumption, as shown in Figure 8B, 
where the amplitude of seasonal ground displacements is shown. Notably, we noticed 
that these seasonal changes are superimposed over a general trend of subsidence of irri-
gated land that has evolved over recent years (2017 to 2020). The small-scale land subsid-
ence caused by overexploitation of groundwater in the Northern Urumqi region has been 
investigated [66]. 

The analysis of the plots shown in Figure 11 shows that the deformation time series 
are moderately correlated to temperature variations. Note that in the study areas, the tem-
perature difference in a year is enormous; the highest temperature is 41 °C and the lowest 
is −28 °C. In these areas, instead of permafrost, temperature changes can lead to freezing 
and thawing. Moreover, our results suggest that the observed ground deformation is 
mainly related to the yearly farmland irrigation cycle, which usually starts in March/April 
and ends in October. This is in agreement with what is shown by the nonlinear defor-
mation time series of points A-F depicted in Figure 11. Of course, there is a correlation 
between seasonal temperature variations and irrigation cycles. This is the reason for the 
inferred moderate correlation between ground displacement and temperature. Our re-
sults are in general agreement with the outcomes of a research study [66] that investigated 
small-scale ground deformations linked to irrigation in the Northern Urumqi region by 
using first-generation ENVISAT/ASAR images collected from 2003 to 2009. 

It is documented that rainfall and temperature have little influence on the ground-
water level changes in this area [67]. Accordingly, most of these changes can be related to 
human activities and particularly to the irrigation of farmland. Indeed, the starting and 
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stopping of agricultural irrigation strictly regulates groundwater depth [67]. Mainly dur-
ing the agricultural irrigation period, subsidence deformation is caused by the overexploi-
tation of groundwater. In the period when irrigation activities are stopped, uplift defor-
mation depends on the recharge of groundwater [66]. These seasonal groundwater level 
changes thus have an impact on the observed nonlinear ground deformation, as shown in 
Figure 11, where the dotted green and black lines highlight the beginning and end of the 
irrigation period. As a final remark, from our data analysis, we also underline that in this 
area, the ground displacements driven by irrigation are more significant than those due 
to the expansion and contraction of the terrain caused by freezing and thawing, which 
represent the second-order factor that is superimposed on the observed nonlinear ground 
deformations. 

6. Conclusions 
In this paper, we propose a novel strategy for selecting an adjusted network of SB 

interferograms to be subsequently used by the conventional SBAS technique to obtain 
ground deformation time series. The developed interferogram selection method aims to 
minimize the relative error of mean ground displacement velocity measurements based 
on the primary outcomes of recent theoretical studies. Further efforts are still required to 
generalize the method to consider other quality parameters of the selected interferograms 
and take into account the effects of phase unwrapping errors and APS artifacts in order to 
select the optimal set of SB interferograms. The developed ISA was first tested considering 
Sentinel-1B SAR data acquired over the farmland area of the Northern Urumqi region, 
China. Of course, evaluating the capabilities of the developed method would require ap-
plying it to several case study areas. However, this is a matter for future investigation. 
Concerning the results obtained by applying this method to the investigated region, we 
note that SBAS analysis showed that the primary source of the observed ground defor-
mations is primarily related to the overexploitation of groundwater for farmland irriga-
tion. The groundwater in arid areas is of great significance to maintain the stability of the 
ecosystem. Thus, in areas where water resources are scarce, to ensure the healthy devel-
opment of agriculture, it is very important to change the traditional irrigation methods 
and improve the utilization rate of water resources. 
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