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ABSTRACT
Time series landslide displacement is the most critical data set to
understand landslide characteristics and infer its future develop-
ment. To predict landslide displacements and their quantitative
uncertainties, a mathematical description of the landslide evolu-
tion should be established. This paper proposes a novel hybrid
machine-learning model to predict landslide displacements and
quantify their uncertainties using prediction intervals (PIs). First,
wavelet de-noising and Hodrick-Prescott (HP) filters are applied to
decompose the original landslide displacement into periodic,
trend, and noise components. Second, a module built on the
framework of bootstrap and extreme learning machine (ELM) with
a hybrid grey wolf optimizer (HGWO) is used to derive a formula
for modelling the periodic component of the landslide motion.
Another formula for predicting the trend component of the dis-
placement is derived by double exponential smoothing (DES).
Grey relational analysis and kernel principal component analysis
(KPCA) are used to select the main factors controlling the land-
slide motions. Finally, the two constructed formulas are used to
generate the predictions of landslide displacements and the PIs.
Validation and comparison experiments have been carried out on
the Baishuihe landslide in the Three Gorge Reservoir of China.
Results demonstrate the proposed method can achieve better
performance with higher-quality PIs than other state-of-the-
art methods.
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1. Introduction

Landslide is a prevalent and recurrent geological phenomenon worldwide. It poses
serious threats to the local communities and could disrupt the roads, tunnels, bridges,
farmlands, and the environment (Huang 2009). In the Three Gorges Reservoir (TGR)
of China, over 4200 landslides are distributed throughout this region, and the major-
ity of these landslides present characteristics of multiple triggers and reactivations
(Yin et al. 2010). Accurate modelling and predicting landslide displacements are
essential for the prevention of landslide hazards.

Numerous approaches have been developed for modelling landslide based on phys-
ics-based models and statistics-based models. Physics-based models are genersally
built on creep theory describing the constitutive relationship of rock and soil (Ma
et al. 2018; Miao et al. 2018); these models require a wide range of actual observa-
tions and laboratory experiments to determine the physical and mechanical parame-
ters, and thus limit their wide application. Statistical models predict landslide
displacement based on regression analyses of the historical displacements (Wang
et al. 2019). In comparison, statistical models tend to develop the response relation-
ship between landslide displacement and its associated causal factors using a variety
of statistical analyses and machine learning methods, which do not require the deter-
mination of the physical parameters. Consequently, statistical models are generally
easier to implement and have gained increasing popularity.

In previous literature, statistical models have been vigorously discussed and widely
used in forecasting landslide displacement. Representative models include the grey
system model (Deng 1982), the Verhulst model (Tianbin and Mingdong 1996), multi-
variate regression models (Jibson 2007), autoregressive-integrated moving average
(ARIMA) (Carla et al. 2016), and others. In the past decades, some great progress has
been made since the involvement of machine learning (ML) methods in landslide
research. ML was first directly used as a landslide prediction model, but got unsatis-
factory outputs, mostly because of the suboptimal parameter settings, complicated
impact factors, and insufficient observations. Therefore, optimized ML models with
hybrid parameters were created.

In recent years, ML models such as artificial neural networks (ANN) (Lian et al.
2015; Ma et al. 2018; Guo et al. 2019), support vector machine (SVM) (Pradhan
2013; Zhou et al. 2016), and various kinds of optimized coupling models ( Li et al.
2018; Wang et al. 2019) have gradually become the mainstream as a more powerful
approach in landslide research. Generally, SVM has a better performance than the
ANN, but the model itself has some defects, e.g. having difficulty in parameter selec-
tion (Cao et al. 2016). Nowadays, the extreme learning machine (ELM) has overcome
the challenge of parameter initialization and has advantages on global minimum opti-
mization and strong generalization; therefore, it has been successfully tested in many
other fields with promising prediction results (Miche et al. 2015; Cao et al. 2016;
Tram�er et al. 2017). However, as a single-hidden-layer feed-forward neural network,
ELM may introduce additional prediction errors if trained with a small data set (Li
et al. 2018). To achieve a better performance, ensemble-based bootstrap sampling and
hybrid parameter optimization methods are introduced to ensure the optimal per-
formance of ELM in this study.
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The optimization algorithms can be divided into the deterministic algorithms and
the stochastic algorithms (Mirjalili 2015), the latter is capable of avoiding local solu-
tions due to randomness. Among the stochastic algorithms, grey wolf optimizer
(GWO) proposed by Mirjalili et al. (2014) is a new biological intelligence algorithm
that is inspired by the behaviour of grey wolves, gives better quality solution than
other old metaheuristic algorithms (Faris et al. 2018; Teng et al. 2019), such as gen-
etic algorithm (GA), ant colony optimization (ACO), particle swarm optimization
(PSO), and others (Mirjalili et al. 2014; Gao and Zhao 2019; Wang and Li 2019).
However, as one of the swarm intelligence algorithms, GWO is still likely to fall into
stagnation when predation suffers slower convergence during some of the long
sequential execution time (Zhu et al. 2015). Therefore, a meta-heuristic search
method named differential evolution (DE) is introduced to further accelerate the
convergence and increase the optimization accuracy of GWO, called the hybrid
GWO (HGWO). The HGWO will update the previous best position of each grey
wolve to help GWO jump out of the stagnation through DE’s strong search-
ing ability.

Besides model building, the selection of input variables also has a big impact on
the prediction accuracy in machine learning. The recent researches began to analyse
the role of impact factors in landslide evolution during ML modelling (Guo et al.
2019; Miao et al. 2018; Zhou et al. 2018; Zhu et al. 2018); however, only a few have
established the response relationship between causal factors and landslide deform-
ation. In consequence, the physical meanings of various components of the landslide
displacement time series are unclear, causing the associated causal factors cannot
effectively be linked with the corresponding components. What’s more, previous
researches on landslide displacement forecasting are mainly focused on deterministic
prediction (H. Li et al. 2019; Wang et al. 2019; Zhou et al. 2018 ), which provides
only one fixed forecast value at a given time point for each target. Although it can
estimate the forecasting error at the point, point prediction gives limited consider-
ation on stochastic behaviours of the landslides system and therefore could not effi-
ciently represent the dynamic uncertainty of landslides.

To solve these problems, this paper proposes a new composite model integrating
multiple ML and statistical models to produce unbiased reliable forecasts for land-
slide displacement. The model combines multi-algorithms to optimize the ML mod-
els and quantifies the uncertainty by prediction intervals (PIs). The model aims to
establish a more accurate response relationship between causal factors and landslide
deformation. The landslide displacement time series consists of a long-term trend
dominated by internal geological conditions, a short-term periodical fluctuation
affected by external triggering factors, and random noise components. Time series
landslide displacements are first denoised and decomposed. Then, a novel composite
framework involving bootstrap resampling, double exponential smoothing (DES),
and hybrid grey wolf optimizer (HGWO) optimized ELM is built to obtain formu-
las to predict landslide displacements. Experiments on the Baishuihe landslide in
TGR from 2003 to 2013 have confirmed the effectiveness and utility of the pro-
posed model for long-term practical monitoring and forecasting of landslide
displacements.
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2. Methodology

2.1. Time series analysis of landslide displacements

Generally, the dynamic movement of a landslide is subject to internal geological con-
ditions and external environmental factors. The displacement dominated by geological
conditions (e.g. topography, geotechnical properties) is generally found to be approxi-
mately monotonic over time, indicating the long-term trend. The displacement
affected by external triggering factors (e.g. rainfall and reservoir water variation) can
be expressed as a proximate periodic function, leading to different deformation fea-
tures. The pattern of the landslides displacement in the TGR of China is normally
controlled by joint efforts between geological conditions and environmental factors.
The accumulated displacement can be decomposed as follows:

Dt ¼ Tt þ Pt þ nt (1)

where Dt is the original accumulated displacement, Tt stands for the trend displace-
ment, Pt is the periodic displacement, and nt represents the random noise of the
displacement.

In this study, a wavelet-based denoising method, which preserves important signals
while removing noise by diagnosing features of data at different frequencies, is
applied to remove the random noise in original displacement. Then, the de-noised
displacement time series is divided into the periodic and trend components by the
Hodrick-Prescott (HP) filter. The HP filter has been widely used in macroeconomics
due to its strength in deriving smoothed-curve expression of the time series observa-
tion. Previous studies have proven that HP is more sensitive to the long-term trend
evolution than to the short-term fluctuations (Ravn and Uhlig 2002). The sensitivity
of the long-term trend to short-term variation can be adjusted by modifying a param-
eter k: Then, the trend component of a time series can be obtained as follows:

min
c

XT
t¼1

ðyt�ctÞ2 þ k
XT�2

t¼3

ðct�ct�1Þ�ðct�1�ct�2Þ½ �2
( )

(2)

where yt (t¼ 1, 2,… ,T) denotes the logarithms of data time series; c represents the
trend component; k is the smoothing parameter, controlling the smoothness of the
trend component. The objective of Equation (2) is to obtain a smoothed trend com-
ponent by minimizing both 1) the misfit between the observed and the trend compo-
nent (i.e. term 1 in Equation (2)) and 2) the second-order difference of the trend
component (i.e. term 2 in Equation (2)). Thus, if the smoothing parameter k is 0, no
smoothing takes place. The larger the value of k is, the smoother the result is. When
the value of k becomes large enough, for example, k ¼ infinity, the trend component
could be considered as linear. In principle, the appropriate value of k also depends
on the periodicity of the original data. For yearly data, k ¼ 100 is suggested, while for
monthly data k ¼ 14400 is suggested (Zhu et al. 2018). In this study, the landslide
displacement with sharp acceleration occurred once a year. Consequently, the
smoothing parameter k ¼ 100 is assigned.
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2.2. Analysis of model uncertainty

In the landslide displacement prediction model, the predicted displacement can be
expressed as follows:

Fi ¼ f xTið Þ þ ei ¼ T xTið Þ þ P xPið Þ þ ei (3)

where Fi is the ith observable target values, TðxTiÞ and PðxPiÞ represent the true trend
and periodic regression outputs of a forecasting model, xi is the vector of inputs, and
e is the random error assumed to be normally distributed with mean zero and vari-
ance r2e : In practice, the goal of regression is to produce an estimate of the true
T̂ðxTiÞ and P̂ðxPiÞ: Given all terms in Equation (1) have associated sources of uncer-
tainty, and assuming they are independent, the total variance of prediction is given
by the following:

r2F ¼ r2f þ r2e ¼ r2Tmodel þ r2Pmodel þ r2e (4)

where r2Tmodel and r2Pmodel stand for the model uncertainty of the forecasting trend
and periodic displacement separately, and r2e is the random noise variance.

So far, a diverse set of approaches have been developed to quantify the model
uncertainty, ranging from Delta (Chryssolouris et al. 1996), mean-variance estimation
(MVE) (Nix and Weigend 1994), Bayesian (Dybowski and Roberts 2011), lower upper
bound estimation (LUBE) (Khosravi et al. 2011b), and bootstrap (Khosravi,
Nahavandi, Creighton, Srinivasan 2011). Bootstrapping is a statistics-based technique
focusing on the simplification of the original time series, allowing estimation of the
sampling distribution of almost any statistic (Wan et al. 2014). Besides, this method
has good compatibility with other training methods of ML (Pearce et al. 2018); it
requires no complex matrices and derivatives during calculations, ensuring efficient
implementation.

Model uncertainty can be attributed to several factors including model bias, train-
ing data variance, and parameter uncertainty (Pearce et al. 2018). The model bias
occurs in two main forms: firstly, how comprehensive are the employed factors affect-
ing typical landslide systems; secondly, how representative is the model representing
the landslide process. Accordingly, to mitigate the bias, grey relational analysis (GRA)
and kernel principal component analysis (KPCA) are coupled to analyse the possible
triggering factors and figure out the potential contribution of each component affect-
ing landslide displacement. Then, an optimized ELM model is applied to acquire the
global minimum optimization by minimizing the output errors; consequently, the
model misspecification could be assumed zero. The parameter uncertainty results
from sub-optimal parameters are assigned for the forecasting model. Besides, ML
related algorithm is sensitive to parameter setting; various weighting parameters lead
to varying outputs even if with the same inputs. Therefore, an ensemble-based ELM
trained with different parameter initializations (parameter resampling) and an
HGWO parameter method are proposed to derive the optimum parameters. As for
the training data uncertainty, it is solved by a bootstrapping. The final resulting
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ensembles of ELMs contain a certain level of diversity, which can be used to estimate
the model uncertainty and construct the PIs given a certain confidence level.

2.3. Forecast model and evaluations

In this study, an integrated model, based on the framework of bootstrap and ELM
optimized by the HGWO, is used to obtain the prediction formula for the periodic
component and calculate the trend prediction formula aided by DES. The corre-
sponding predictions are summated to get the forecasted cumulative displacements
and the prediction intervals (PIs). The main processes are illustrated in Figure 1.

2.3.1. Double exponential smoothing
The DES is designed to process time series exhibiting a certain trend (Holt 2004).
This approach works by applying a weighted combination of the past observations
with recent observations given relatively higher weight than the older ones (Zhu et al.
2018), and updating the slope component through exponential smoothing. In this
study, DES is employed to predict the trend displacement of a landslide with an obvi-
ous pattern.

Given an observed time series xif g, we begin at the time i ¼ 0 to indicate an
observation sequence. sif g denotes the smoothed value of the DES at the time i, bif g
indicates the best estimate of the trend displacement at time i: Thus, the output of
DES can be written as Fiþm, an estimate of x at the time iþm, where m � 1,m 2
N, based on time series data available before time i: Then, DES can be performed
based on the following formulas:

Fiþm ¼ si þmbi (5)

si ¼ fxi þ ð1�fÞðsi�1 þ bi�1Þ (6)

bi ¼ nðsi�si�1Þ þ ð1�nÞbi�1 (7)

where i ¼ 1 , 2 , 3:::, f, s1 ¼ x1, b1 ¼ x1�x0, f is the data smoothing factor with
0<f<1, n is the trend soothing factor with 0< n< 1:

2.3.2. Extreme learning machine
ELM is a hidden-layer feed-forward neural network training/learning method. ELM
has advantages on strong generalization and can learn thousands of times faster than
networks trained using backpropagation (Huang et al. 2006). In this algorithm, the
initial parameter including the weight matrix connecting the input to the hidden
layer, the threshold of hidden layer neurons is randomly assigned. During the model
training, the output weights of the hidden layer and the global optimal solution can
be obtained when the number of hidden neurons is set.

Given a set of training data ðxi, tiÞ, where ðxi, tiÞ 2 Rn � Rmði ¼ 1, 2, :::,NÞ: A
standard ELM with ~N hidden neurons with an activation function f ðxÞ can be written
as follows:
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X~N
i¼1

bifi xjð Þ ¼
X~N
i¼1

bifi ai � xj þ bi
� � ¼ tj; j ¼ 1, :::,N (8)

where ai ¼ ai1, ai2, :::, ain½ �T is the weight matrix connecting the input to the hidden
layer,bi is the threshold of hidden layer neurons, bi ¼ bi1,bi2, :::, bim½ �T is the weights
matrix connecting the hidden to output neurons. We rewrite the above equation com-
pactly as Hb ¼ T, where H is the output matrix of the hidden layer, b is output weigh
matrix, and T is the targets matrix. These variables can be expressed as follows:

Figure 1. Flowcharts of the forecasting model.
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H ¼
f a1 � x1 þ b1ð Þ � � � f a~N

� x1 þ b~N

� �
..
. � � � ..

.

f a1 � xN þ b1ð Þ � � � f a~N � xN þ b~Nð Þ

2
664

3
775
N�~N

, b ¼
b1

T

..

.

b~N

T

2
664

3
775

~N�m

, T ¼
t1T

..

.

tNT

2
64

3
75
N�m

(9)

The ELM training process is equivalent to finding the least-squares solution b̂ of
Equation (10),

kH a1, :::, a~N , b1, :::, b~Nð Þb̂ � Tk ¼ min
b

kH a1, :::, a~N , b1, :::, b~Nð Þb� Tk (10)

The smallest norm least-squares solution is b̂ ¼ H†T, where H† is the Moore-
Penrose generalized inversion of the matrix H:

2.3.3. Hybrid grey wolf optimizer
Grey wolf optimizer (GWO) is a recent meta-heuristic algorithm that is inspired by
the behaviour of grey wolves (Mirjalili et al. 2014). This algorithm embeds the bio-
logical evolution and the ‘survival of the fittest’ (SOF) principle of biological updating
of nature, which leads to favourable convergence. However, the GWO is likely to fall
into stagnation when predation suffers slower convergence due to the long sequential
execution time (Zhu et al. 2015). Thus, a meta-heuristic search method named differ-
ential evolution (DE) algorithm is introduced to help the GWO to jump out of the
stagnation, this hybrid GWO is named HGWO.

Assuming the population size is N, the ith wolf in a search dimension d can be
written as

Xi ¼ Xi
1,X

i
2, :::,X

i
d

� �
(11)

Thus, the position of the p th (p ¼ 1, 2, :::d) component of the ith individual can
be expressed as

Xk
p ¼ Xk

pðlowÞ þ Xk
pðupÞ � Xk

pðlowÞ
� �

� randð0, 1Þ (12)

where k ¼ 1, 2, :::,N Xk
pðlowÞ and Xk

pðupÞ(k ¼ 1, 2, :::,N) denote the lower and upper
boundaries of individual wolves in the search landscape, respectively, randð0, 1Þ repre-
sents a random number in ½0, 1�:

The encircling behaviour of grey wolves can be model as follows:

DðtÞ ¼ C � XpðtÞ � XðtÞ�� �� (13)

Xðt þ 1Þ ¼ XpðtÞ�A � D (14)

where t represents the current iteration, A and C are coefficient vectors, X indicates
the position vector of a grey wolf, Xp stands for the position vector of the prey. The
coefficient vectors A ¼ 2a � r1�a,C ¼ 2 � r2, r1 and r2 are random variables in the
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range of [0,1], a is the control coefficient, which linearly decreases from 2 to 0
throughout the iterations.

The HGWO allows relocating a solution around another in an n-dimensional
search space to simulate chasing and encircling prey by grey wolves in nature.
During the simulation, the grey wolves will first search and track the prey, and then
encircle it. However, in fact, the optimal prey position is unknown. To mimic wolves
internal leadership hierarchy, the wolves are divided into four types: alpha (a), beta
(b), delta (d), and omega (x). The objective is to find the minimum in this search
landscape; thus in HGWO, it assumes that positions of a, b, and d are likely to be in
the prey (optimum) positions. In the iterative search, the best three individuals
obtained are recorded respectively as a, b, and d. Other wolves denoted as x relocate
their positions according to the locations of a, b, and d. Figure 2 shows how a search
agent updates its position according to a, b, and d in a 2D search space. It can be
observed that the final position would be in a random place within a circle, which is
defined by the positions of a, b, and d in the search space. In other words, a, b, and
d estimate the position of the prey, and other wolves update their positions randomly
around the prey. The following mathematical formulas are used to update the posi-
tions of wolf x.

Da ¼ C1 � Xa � Xj j, Db ¼ C2 � Xb � X
�� ��, Dd ¼ C3 � Xd � Xj j (15)

where Xa,Xb, and Xd represents the position of wolf a, b, and d respectively;C1,C2,
and C3 are randomly generated vectors. Equations (15)–(17) calculate the distances
between the position of the current individual and that of individuala, b, and d. The
final locations of the current individual can be calculated by

X1 ¼ Xa�A1 � Da, X2 ¼ Xb�A2 � Db, X3 ¼ Xd�A3 � Dd (16)

X tþ1ð Þ ¼ ðX1 þ X2 þ X3Þ=3 (17)

Figure 2. Position updating in HGWO.
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DE, first proposed by Storn and Price (Storn and Price 1997), is a stochastic algo-
rithm solving global optimization. It starts with a random population generation,
whose next-generation population is produced based on mutation, crossover, and
selection operations. DE adopts a typical novel strategy to produce the variation of
individuals: firstly, randomly select three different individuals; then zoom the differ-
ence vector of two individuals; finally, synthesize the zoomed vector with the third
individual to achieve the mutation operation and remain the diversity of the popula-
tion as follows:

ViðgÞ ¼ Xr1 ðgÞ þ F � Xr2 ðgÞ � Xr3 ðgÞ
� �

(18)

Uk
j ðgÞ ¼

Vk
j ðgÞ, if rand 0, 1ð Þ � CR k j ¼ jrand

Xk
j ðgÞ, otherwise

(
(19)

where r1 6¼ r2 6¼ r3 6¼ i; g is the number of iteration; F is the scaling factor;CR repre-
sents the crossover probability; jrand denotes a random integer between 1; d is the
number of the dimension of the solutions (individuals). In DE, the greedy strategy is
adopted to select individuals for the next generation using Equation (20).

Xkðg þ 1Þ ¼ UkðgÞ, if f UkðgÞ� � � f XkðgÞ� �
XkðgÞ, otherwise

	
(20)

2.3.4. Prediction intervals (PIs) and evaluation indices
PIs are common tools used to quantify the uncertainty related to prediction models
(Mazloumi et al. 2011). Before we elaborate on PIs, it is worth distinguishing confi-
dence intervals (CIs) from PIs because they are not the same parameter but unfortu-
nately are often confused. A CI is an estimate of an interval computed from the
statistics of the observed data, e.g. population mean. CIs consider the distribution
Prðf ðxÞjf̂ ðxÞÞ in Equation (3), and hence only require estimation of r2f : A PI is an
estimate of an interval in which a future observation will fall, with a certain probabil-
ity, given what has already been observed. PIs consider PrðFjf̂ ðxÞÞ in Equation (3)
and must also consider r2e (Dybowski and Roberts 2011; Khosravi et al. 2011a).
Therefore, PIs are necessarily wider than CIs.

For a landslide process model in ensemble form, given a set of pairs fðxi, FiÞgNi¼1,
where xi represents model inputs related to influenced factors of the landslide dis-
placement, Fi denotes the outputs associated with displacement prediction. A PI con-
struction based on the bootstrap, with a given confidence level of (1 � a) � 100%,
can be expressed as follows:

F̂ i�Z1�a

ffiffiffiffiffiffiffiffi
rF̂ i

2
q

, F̂ i þ Z1�a

ffiffiffiffiffiffiffiffi
rF̂ i

2
q� �

¼ L̂ F̂ i

� �
, Û F̂ i

� �
 �
(21)

where L̂ðF̂ iÞ, ÛðF̂ iÞ are the lower and upper bounds of the ith PI, respectively, and a
is the quartile of the standard normal distribution.
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In this study, based on the bootstrap framework, we use an HWGO-optimized
ELM model to construct the PIs of the landslide displacements. Figure 1 gives a sche-
matic of the model used in the bootstrap method to generate PIs. PIs not only pro-
vide intervals where targets are highly likely to occur but also indicate the coverage
probabilities. From the perspective of prediction, the constructed PIs should be as
narrow as possible, whilst capturing a specified portion of data. Here, two perform-
ance indices, the PI coverage probabilities (PICPs) (Dybowski and Roberts 2011;
Khosravi et al. 2011a) and the PI normalized root-mean-square width (PINRWs)
(Lian et al. 2016) are used to assess the performance of a PI. These indices can be
expressed by the following:

PICP ¼ 1
N

XN
i¼1

ci, ci ¼ 1, Fi 2 L xið Þ,U xið Þ
 �
0, otherwise

	
(22)

PINRW ¼ 1
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðÛ Fið Þ�L̂ Fið ÞÞ2
vuut (23)

where N is the number of samples, and R equals to the maximum minus minimum
of the target value.

By definition, PICP is a value that ranges from 0 to 1. However, a perfect PICP
(100% confidence level) with an extremely wide PINRWs is meaningless for decision-
makers; thus, large values of PICP with small values of PINRWs indicate high-quality
PIs. Given a confidence level of PICP, the objective was to find out the narrowest
PINRWs. Therefore, a combined index that can balance the PICP and PINRW is
required to provide a comprehensive assessment of PIs. Here, we use a criterion
named coverage width-based criterion (CWC) based on a Gaussian function as the
comprehensive index. CWC is given by (Lian et al. 2016),

CWC ¼ PINRWþ wð Þej PICP�lð Þ2
2d2 (24)

where w denotes a small positive value range from 0.1% to 0.5%, and l and d are
two hyperparameters of which the values should be set before the learning process.
Generally, l is set to 1� a and d to a small positive value less than 1. For the testing,
j is given by

j ¼ 0, PICP, l
1, PICP, l

	
(25)

CWC aims to find a trade-off between the informativeness (PINRW) and validity
(PICP) of PIs. According to Equation (25), the smaller the value of the CWC, the
higher the quality of PIs.
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3. Application to Baishuihe landslide

3.1. Study area and monitoring data set

The Baishuihe landslide sits in the town of Zigui, Hubei province. It is located on the
south side of the Yangtze River and spread into the Yangtze River. The landslide is
about 56 km away from the Three Gorges Dam, China (Figure 3(a)). As a typical
recurrence reservoir landslide, the Baishuihe landslide is fan-shaped (Figure 3(b-c)),
with the main sliding direction of 20� NE. The maximal dimensions in north-south
and east-west are 780 and 700m, respectively. The volume of the landslide is about
1260� 104 m3 with an average slide thickness of about 30m (Li et al. 2019).

The materials of this landslide are mainly quaternary deposits, including silty clay
and fragmented rubble with a loose and disorderly structure. The underlying bedrock
is composed of Jurassic Xiangxi Formation, overlain by Quaternary deposits which
contain silty mudstone and sand muddy siltstones (Li et al. 2010). As shown in
Figure 4, the elevation of the current slide ranges from 75 to 390m, with a relatively
flat central part, while larger gradients in the upper and lower parts of the landslide.
As suggested by the field investigation and monitoring data, the landslide can be cate-
gorized into a relatively stable block (block-B), and an active back (block-A) (Figures
3 and 4).

As an activated landslide, the Baishuihe landslide was first triggered by the first
reservoir impoundment in June 2003. Since then, several cracks have been found on
the landslide (Figure 3(c)). To monitor its movement, 11 professional GPS stations
and three borehole inclinometers were deployed on-site (Figures 3 and 4) with syn-
chronizing measurements once a month. Besides, the water level of the reservoir has
been collected by on-site water level gauge, and the precipitation has been obtained

Figure 3. (a) Location of the landslide, (b) an overall view of the landslide, (c) topographic map of
the landslide.
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from a monitoring site installed at 9.5 km away from the landslide. The monitoring
data are presented in Figure 5.

As shown in Figure 5, the displacement of the Baishuihe landslide exhibited an
obvious monotone feature over time as well as seasonal patterns, increasing from
April to September each year and remaining stable from October to April in the next
following year. Thus, the period of the seasonal characteristic is approximately a year,
which is a joint effort of the heavy seasonal precipitation and the fluctuation of reser-
voir water level. It can also be inferred from Figure 5 that these combined effects of
the triggering factors on the landslide displacements show significant time lags.
Among the displacement monitoring stations, ZG93 and ZG118 deployed on the
active Block-A of the slope, have complete records to represent the dynamic behav-
iour of the landslide, and are selected for the following analysis in this study.

3.2. Time series analysis

The raw data set is first processed by outlier removal and missing value imputation.
Then, a wavelet-based de-noising is adapted to remove random noise from time

Figure 4. Geological profile (I-I’ in Figure 3(c)) of the Baishuihe landslide.

Figure 5. Monitoring data in time series.
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series displacements. As shown in Figure 5, the landslide displacement pattern com-
prises a high-frequency seasonal displacement dominated by external triggering fac-
tors and a low-frequency monotone displacement affected by geological conditions.
Thus, a decomposition of the time series displacements is conducted to establish a
response relationship separately, and the result is shown in Figure 6.

As mentioned, the reservoir water level and precipitation have a seasonal trend
that generates the landslide with a seasonal displacement pattern. Here, the variation
of the precipitation, the reservoir water levels, and the periodic displacements, illus-
trated in Figure 7, are used to analyse the potential response relations. As shown in
Figure 7, significant seasonality patterns of the two major triggering factors in a con-
cordance with the periodic displacements, and the obvious time lags between the fac-
tors and the instant displacement are observable.

To evaluate the complex nonlinear relations, the GRA is first used to calculate the
significance of two different data sequences. Factors with a grey relational degree
(GRD) value greater than 0.6 are believed to have a significant impact on the instant
displacements. Consequently, six indicators are selected as the initial influencing fac-
tors of the landslide displacement, including monthly average reservoir water level,
monthly cumulative rainfall, the previous two-month cumulative rainfall, the amount
of reservoir water level fluctuation per month, the amount of reservoir water level
fluctuation per two months and the reservoir water level rate per month.

After correlation assessment using GRA, the Gaussian KPCA is adopted to select
efficient features (without redundancy) for landslide displacement modelling and
forecasting through analysing the six influencing factors and the time series displace-
ments. KPCA performed in a reproducing kernel Hilbert space involves multivariate
analyses to understand complicated nonlinear relationships between variables and

Figure 6. Decomposition of time series displacements at ZG193 (left) and (b) ZG118
(right) stations.

Figure 7. Seasonal pattern of the periodic displacements, the precipitation, and the reservoir
water levels.
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their relevance to the problem being studied. Principal components of KPCA, con-
verting from a set of possibly correlated variables to uncorrelated orthogonal informa-
tion, can realize the dimensionality reduction effectively. Generally, the first few
components contain much of the signal with a high signal-to-noise ratio, while the
later components are dominated mainly by noise and can be directly disposed of
without great loss. As shown in Table 1, the first three principal components concen-
trate 	90% of the total variance contribution, with the first component the highest
contribution (	45%), following by 	30% of the second component. Therefore, these
three components are used as input-influencing factors for model training and
forecasting.

3.3. Results and comparative analysis

3.3.1. Results
As mentioned, ZG93 and ZG118 on the active Block-A have complete records to rep-
resent the dynamic behaviour of the landslide and are selected to establish and evalu-
ate the prediction model. Displacements acquired monthly from 2003 to 2013 and
the associated daily reservoir water level and precipitation are used in the study. The
first 100 groups of the data set (acquired from July 2003 to November 2011) are used
as the training data set and the last 16 groups as the testing data set to evaluate the
performance of our proposed method. During the prediction of landslide trend dis-
placement, the parameters f and n of DES are set to 0.99 and 0.98, respectively, to
obtain smooth results. As illustrated in Figure 8, the predicted trend displacement is
close to those on-site measurements, with the absolute error of less than 3mm, sug-
gesting that the DES is a promising trend forecasting model.

Before modelling the periodic component of the landslide motion, the principal
triggering components and the periodic displacements are normalized into the range
of [0, 1] to eliminate dimensional effects on ML models and improve the reliability
of the forecasts. It will be renormalized back after HGWO-ELM training processing.
The bootstrap replicate number is set to 20, and the hidden layer neurons of ELM
are set to 12. To further mitigate the effects of the model parameter uncertainty, an
ensemble-based ELM is trained with different parameter initializations, and the
HGWO will iterate 100 times to get the optimum parameters for each ELM. Then,
the regression mean and the variance of the nth bootstrapped HGWO-ELM can be
estimated as indicators of the model uncertainty, and the PIs can be constructed
given a certain confidence level of (1� a)� 100% using Equation (21). The predicted

Table 1. Variables selection by GRA-KPCA as model inputs.

Principal
components

ZG118 (c¼ 800) ZG93(c¼ 800)

Eigenvalue

Variance
contribution

%

Total variance
contribution

% Eigenvalue

Variance
contribution

%

Total variance
contribution

%

1 0.772 45.425 45.425 0.767 45.104 45.104
2 0.518 30.482 75.907 0.518 30.448 75.552
3 0.246 14.486 90.393 0.251 14.788 90.340

GEOMATICS, NATURAL HAZARDS AND RISK 755



periodic displacements with PIs at a nominal confidence level of 95% are shown in
Figure 9.

The predicted cumulative displacements with PIs can be derived by combining the
two predicted components, and the constructed PIs with a nominal confidence level
of 95% are illustrated in Figure 10. As can be seen, the on-site monitoring displace-
ments used as either training or testing are distributed in the constructed PIs with a
95% confidence level. Even in the periods of faster seasonal variations, the results also
display satisfactory coverage probability. Thus, the value of PICP obtained using the
proposed method is 100%, demonstrating the predictive ability of our proposed
method in landslide displacement. The value of PINRWs is 0.2116 and 0.2266 for the

Figure 8. Forecasting results of the trend displacement of the landslide.

Figure 9. Forecasting results of the periodic displacement of the landslide with 95% confi-
dence level.

Figure 10. Forecasting results with PIs at a nominal confidence level of 95%.
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two on-site stations, respectively. In general, high-quality PIs always have a higher
value of PICP and a smaller value of PINRW. Thus, as a trade-off between the two,
CWC is used; the smaller the value of the CWC, the higher the quality of PIs. In this
study, the results of CWC are 0.2126 and 0.2276, respectively, indicating that the pro-
posed model exhibits satisfactory performance in the interval prediction of landslide
displacement. Furthermore, the proposed approach has accounted for the existing
uncertainties during the model training and forecasting process and thus could gener-
ate reliable PIs.

3.3.2. Comparative analysis
To illustrate the superiority of the proposed method over existing state-of-art meth-
ods such as hybrid DES and PSO-ELM, hybrid DES, and GWO-ELM, we compare
the results of these models based on the same framework of bootstrap. Parameters
and other inputs associated with Bootstrap and DES are uniform to facilitate com-
parative analysis, e.g. the number of bootstrap replicates. Besides, the number of hid-
den layer nodes and the initial parameters of the ELM model are also consistent with
those in the proposed method. During the displacement prediction, the cumulative
displacements are first denoised and decomposed; then, the trend term is predicted
via the DES, while the periodical displacement is predicted by the HGWO-ELM (our
method), the PSO-ELM, and the GWO-ELM algorithms, separately. During this pro-
cess, three different optimization algorithms, the HGWO, the PSO, and the GWO,
are used to optimize the weight matrix connecting the input and hidden layers of
ELM. Thus, different weight matrices generated by three different optimization algo-
rithms are used during ELM training and predicting.

Evaluation indices defined in Section 2.3.4 are used to quantify the performance of
the proposed method and the comparative methods. Table 2 gives the indices of all
the studied methods. As can be seen, the PIs generated by the proposed method and
comparison methods display satisfactory coverage probabilities. All the training and
testing data lie in the constructed PIs with 95% confidence level. In fact, in the land-
slide prediction, it is better to cover all the training data with a high confidence level
(e.g. 95%) PIs (means high PICP). If not, it is hard to believe that the forecasting
model is well-trained, because it is a minor probability event with 5% probability of
the data that would fall outside of the PIs. Besides, if there are several data in
sequence falling outside of the PIs, model performance would be even worse, because
it is too hard to tell whether they are caused by the prediction error or that they indi-
cate a new state of motion of the landslide.

Table 2. Prediction performance of the studied methods.

Monitoring stations Methods

Evaluation indices

PICP PINRW CWC

ZG118 DES-HGWO-ELM 1.0000 0.2266 0.2276
DES-GWO-ELM 1.0000 0.4702 0.4712
DES-PSO-ELM 1.0000 0.7161 0.7171

ZG93 DES-HGWO-ELM 1.0000 0.2116 0.2126
DES-GWO-ELM 1.0000 0.4665 0.4675
DES-PSO-ELM 1.0000 0.7345 0.7355
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Although the CWC is a comprehensive index that encompasses the PICP and the
PINRW, given a certain value of PCIP, the CWC values in Table 2 are mainly controlled
by the PINRW. The smaller the value of the PINRW, the smaller CWC, and the higher
the quality of the PIs. Results in (Wang et al. 2019) showed that if the DES model was
not used in landslide trend displacement prediction, the value of the PINRWs would be
several times larger, illustrating the advantage of the DES. More importantly, the reason
for using DES in this study is that it was designed to process time series exhibiting a cer-
tain trend and therefore could model the trend displacement of a landslide better than
other methods (e.g. polynomial fitting and moving average).

As shown in Table 2, at the monitoring station of ZG118, the values of the CWC
of the DES-HGWO-ELM, DES-PSO-ELM, and DES-GWO-ELM methods are 0.2276,
0.4712, and 0.7171, and the corresponding values for ZG93 are 0.2126, 0.4675, and
0.7355, respectively. These indicators suggest that the performance of the proposed
DES-HGWO-ELM is better than the other two methods, and the DES-PSO-ELM is
the worst among the three. That is, the HGWO gives the best parameter optimization
for the ELM compared with the GWO and PSO, ensuring that our proposed method
exhibits satisfactory predictive ability in the interval prediction of landslide displace-
ment. The comparative results are shown in Figure 11.

From Figure 11, we can see that the widths of the PIs vary with time, which indi-
cates that the uncertainty of the displacement prediction varies with time and that
the bootstrap-based methods could quantify these uncertainties. The PIs generated by
the proposed method are the narrowest, followed by the DES-GWO-ELM, and the
DES-PSO-ELM ranks the last. These results demonstrate the superiority of our pro-
posed method for interval prediction of landslide displacement.

4. Discussion

Predicting landslide displacements lays the foundation for the prevention of landslide
hazards. The behaviour of a landslide can be characterized by its transient displace-
ments that can be modelled mathematically. ML-related methods trained by historical
monitoring data have gained increasing popularity in landslide displacement

Figure 11. Comparative results with PIs at a nominal confidence level of 95%.
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prediction. However, most of the published works provide only the deterministic
point forecasting result and therefore could not accurately represent the dynamic
uncertainty of landslide displacement.

We propose a novel hybrid machine-learning model to predict the landslide dis-
placement and quantify the uncertainties in terms of PIs. Through considering the
uncertainty, our approach enables users to make a more informed and appropriate
decision. Besides, the variation of the PIs width is also important in decision making,
because a wide PI represents a high level of uncertainty of the forecasts. Although PIs
can be used as a complementary source of information along with point predictions,
the calculation of PIs is computationally intensive when dealing with large data sets.

The failure of a slope is often characterized by acceleartion in deformation rate.
Hence, the ML models, such as the HGWO-ELM powered by strong learning and gener-
alization capacity, can be practically useful in assisting the prevention and mitigation of
landslide hazards. For example, the predicted displacements help set warning thresholds
and detect anomalous displacements, which might be a sign of an unprecedented accel-
eration of a typical landslide and usually trigger the early warning procedures. If the
detected anomalous displacements occur at the acceleration stage, landslide models built
on creep theory, such as Saito model (Saito 1965), could be used to predict a landslide.

Besides, displacement monitoring and prediction based on in situ measurements is
still an important field worthy of further study in landslide research. However, the
cost of the ground monitoring devices in terms of time and manpower may limit the
application of this method. The developing technologies of the earth observation
from the space open a new era for landslide displacement monitoring, e.g., the satel-
lite radar interferometry with monitoring accuracy of a millimeter can also provide
displacement measurements coving a wide range every 6 days using open-access
Sentinel-1 data set (Hu et al. 2017), and will someday serve as the fundamental data
set to fulfil landslide prediction.

5. Conclusions

Accurate prediction of landslide displacement is a vital part of the early warning of
landslide hazard and directly provides technical support for decision-makers in emer-
gency responses. However, prediction errors are often inevitable considering the
dynamic uncertainties of landslide evolution and can be very significant in the deter-
ministic point forecasting methods. In this paper, a hybrid machine-learning model
has been established to predict the landslide displacements and quantify their uncer-
tainties using prediction intervals (PIs). Through considering the displacement fore-
casting uncertainty, this approach enables users to make more informed and
appropriate decisions in disaster management.

The displacements data set and the associated reservoir water level and precipita-
tion over the Baishuihe landslide in TGR, China, have been utilized in this study.
After outlier removal and missing value imputation, the original landslide displace-
ment time series is decomposed into the periodic, trend, and noise components by
wavelet de-noising and Hodrick-Prescott (HP) filters. The trend displacement that
exhibits an obvious monotone feature over time is predicted by the DES, while the
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periodic displacement induced by the seasonal triggering factors is predicted by the
ELM. Then, the predicted cumulative displacement can be obtained.

During modelling, bootstrap sampling and a HGWO are also applied to ensure the
optimal performance of the ELM. Besides, the input variables for model training also
have a big impact on prediction accuracy. Thus, GRA and KPCA are also combined
to generate efficient triggering features for the ELM. Results validate the predictive
modelling capacity of HGWO-ELM in forecasting landslide seasonal displacement.

To further illustrate the effectiveness and reliability of the proposed method, com-
parative analysis of other state-of-art methods including hybrid DES and PSO-ELM,
hybrid DES, and GWO-ELM has also been conducted. Results show that our pro-
posed method can guarantee a perfect PICP with the narrowest PIs (PINRWs) and
the minimum CWC value. Thus, the proposed model has the capacity of effectiveness
and can give a more satisfactory performance than other state-of-art methods in the
interval prediction of the landslide displacement.
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