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Abstract—Phase decorrelation, as one of the main error
sources, limits the capability of interferometric synthetic aperture
radar (InSAR) for deformation mapping over areas with low
coherence. Although several methods have been realized to reduce
decorrelation noise, for example, by phase linking and spatial and
temporal filters, their performances deteriorate when coherence
estimation bias exists. We present an arc-based approach that
allows reconstructing unwrapped interval phase time-series based
on iterative weighted least squares (WLS) in temporal and
spatial domains. The main features of the method are that
phase optimization and unwrapping can be jointly conducted by
spatial and temporal iterative WLS and coherence matrix bias
has negligible effects on the estimation. In addition, the linear
formation makes the implementation suitable with small subset
of interferograms, providing an efficient solution for future big
SAR data. We demonstrate the effectiveness of the proposed
method using simulated and real data with different decorre-
lation mechanisms and compare our approach with the state-
of-art phase reconstruction methods. Substantial improvement
can be achieved in terms of reduced root-mean-square error
(RMSE) in the simulation data and increased density of coherent
measurements in the real data.

Index Terms—Distributed scatterer (DS), interferometric syn-
thetic aperture radar (InSAR), phase decorrelation, distributed
scatterer weighted least squares (WLS).

I. INTRODUCTION

INTERFEROMETRIC synthetic aperture radar (InSAR)
nowadays represents a powerful tool for mapping ground

deformation and topography with high spatial resolution over
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a wide coverage of the Earth’s surface. In recent years, InSAR
technique has been widely exploited in monitoring deforma-
tions caused by natural or anthropogenic activities, including
volcanism [1], seismicity [2], landslides [3], and urban sub-
sidence [4], [5]. It is no doubt that reliable interferometric
measurements are the fundamental of accurate estimation of
the geophysical parameters. The interferometric measurements
between two SAR acquisitions comprise phase components
related to parameters that can contribute to the change in the
physical path between SAR satellite and ground target, and
coherence that indicates the interferometric quality. Promoted
by the next generation of SAR missions with better orbital
control and shorter revisit cycle, the main challenges that
currently limit InSAR capability lie in decorrelation noise
reduction, phase unwrapping, and deformation isolation from
confounding signals.
To tackle the decorrelation phenomenon, multitemporal

InSAR (MTInSAR) technique featured by leveraging an exten-
sive archive of SAR data stack has been developed. Persis-
tent scatterer interferometry (PSI) [6]–[8], as a remarkable
breakthrough in this field, was initially introduced to exploit
the phase of stable point targets [i.e., persistent scatterers
(PSs)] over the entire observation period. The basic strategy
of PSI is to form single-master (SM) interferograms and
estimate geophysical parameters (i.e., deformation rate and
topographic error) from point-wise PSs that are less affected
by temporal or spatial decorrelation. This method is effective
in urban areas with abundant man-made structures, while it is
compromised in rural areas due to the lack of PSs. To over-
come this limitation, the PSI has been evolved to extract
information from distributed scatterers (DSs) in addition to
PSs. The DSs are referred to as the pixels whose coherence
varies with spatiotemporal baselines. These pixels usually
comprise a coherent sum of independent small scatterers with
statistically homogeneous behavior. Based on the central limit
theorem, the mechanism of DSs can be modeled by a complex
circular Gaussian (CCG) radar return, of which the coherence
values tend to decline with the rise in temporal and spatial
separation between SAR acquisitions. Some work based on
exploiting DSs has been conducted to minimize the decorrela-
tion effect by generating the multiple-master (MM) interfero-
grams from properly selected pairs, for example, short baseline
subset (SBAS) method [5], [9], [10]. The selected inter-
ferograms suffer less decorrelation and are further spatially
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multilooked (i.e., complex averaged) to enhance the signal-to-
noise ratio (SNR) at the loss of spatial resolution. After spatial
unwrapping, the SBAS method retrieves the deformation time
series by least squares (LS) with the constraint of minimum
norm [9], [10].
More recently, researches have been forwarded to extract the

phase information of DSs by incorporating all interferometric
combinations. The method typically assumes the radar return
and the geophysical signal is consistent within a cluster of
pixels. Jointly processing these pixels would improve the
SNR and extend the spatial coverage of InSAR deformation
maps [11]. The method usually commences identifying sta-
tistically homogeneous pixels (SHPs) by statistical similarity
test based on amplitude information [11]–[13]. Then, phase
linking (PL) (also called phase triangulation analysis (PTA)
[11], [14]) procedure is adopted to estimate the wrapped SM
phase time series based on the temporal consistency. Up to
now, various PL algorithms have been realized, including max-
imum likelihood estimator (MLE) [11], [14], [15], eigenvalue
decomposition (EVD) [16], [17], integer least squares (ILS)
[18], and the integration of MLE and EVD [19]. Despite their
diverse weighting strategies for the involved interferograms,
their performances deteriorate in the presence of error in
coherence estimation. Regarding the qualities of the estimated
phases, although the PL methods reduce the decorrelation
noise, the qualities after PL do not keep at the same level due
to the diversity of the good-of-fit measurements [11], [18],
[20]. The quality inconsistency of the estimated phases may
propagate into the unwrapped phases, increasing uncertainties
of the estimated geophysical parameters.
With respect to the aforementioned works, we present an

arc-based approach that allows to reconstruct the unwrapped
interval phase chain from the pixels with variable phase
noise. The method uses two successive iterative weighted least
squares (WLS) to first estimate the interval phase chain at
arcs (i.e., point pairs) and then derive the unwrapped phase
maps according to the estimated phase variance. The role of
iterative WLS lies in twofold, that is, suppressing the effects
of coherence estimation bias and phase ambiguities in the arc
processing procedure and ensuring the estimation unbiased
by considering the inconsistent phase quality in the spatial
integration procedure. Improving the quality of unwrapped
phase time series estimated from pixels with variable phase
noise by iterative WLS is therefore the main feature of the
method.
The rest of this article is organized as follows. Section II

describes the detailed implementation of the LS-based phase
estimation, including observation generation, temporal estima-
tion, and spatial recovery. Sections III and IV are dedicated
to the results of synthetic experiments and real data tests,
followed by the conclusion in Section V.

II. METHODOLOGY

A. Observation Generation

The proposed method aims at estimating the unwrapped
phase chain from all possible or selected interferograms. Let
us start from a DS pixel in a stack of the SAR images.

Fig. 1. Coherence estimation bias under different numbers of SHPs.
(a) Relationship between the estimated coherence and true coherence under
different numbers of SHPs. (b) Relationship between the number of SHPs
and coherence bias under different estimated coherence values.

When two coregistered SAR images are available over a given
area, after SHPs are identified by statistical similarity test
between a specific pixel x and the neighboring pixels [11]–
[13], the maximum likelihood estimation of sample complex
coherence for the point x is expressed as

�m,n =
∑L

t=1 s
m(t)sn∗(t)√∑L

t=1|sm(t)|2 ∑L
t=1|sn(t)|2

= γ m,neiφ
m,n

(1)

where m and n are the indexes of the master and slave SAR
images, respectively. L is the number of identified SHPs, t
is the index of identified SHPs; sm(t) and sn(t) represent the
complex phase values of the SAR image pair; ∗ stands for
complex conjugate; i is the imaginary unit; the coherence
magnitude γ m,n defines the degree of coherence; and φm,n

represents the spatially averaged interferometric phase. All
amplitude values in (1) are normalized to compensate for the
disturbance of amplitude among the SAR images [6], [16]. We
remark that the estimation in (1) is biased, especially for a
small number of SHPs and coherence magnitude close to zero
(see Fig. 1) [12], [21]. Assuming there are N coregistered SAR
images forming N(N − 1)/2 interferometric combinations,
the complex coherence matrix is extended as

� =

⎡
⎢⎢⎢⎣

1
γ 2,1eiφ

m,n

...

γ N,1eiφ
N ,1

γ 1,2eiφ
1,2

1
...

γ N,2eiφ
N ,2

· · ·
· · ·
. . .

· · ·

γ 1,Neiφ
1,N

γ 2,Neiφ
2,N

...
1

⎤
⎥⎥⎥⎦

= ϒ ◦ � (2)

where � is an N × N matrix that encapsulates the available
interferometric phases, ϒ is an N × N matrix providing cor-
responding coherence values, and ◦ is the Hadamard product.
The phase and coherence values serve as the basis of the
following function and stochastic models for interval phase
chain estimation, respectively. It should be noted that for
DS, the N(N − 1)/2 combinations in the coherence matrix
are not redundant due to temporal inconsistency after spatial
multilooking operation [18]. While for point-wise PS, the rank
of the coherence matrix equals one, and φm,n represents
the point-wise phase itself. In the following, we will jointly
process DSs and PSs as coherent points based on their phase
and coherence values.
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B. Unwrapped Phase Chain Estimation at Arcs

We first take the phase differences at arcs as the obser-
vations for phase chain estimation. The advantage of arc-
based observations is that the probability of phase ambiguity
after differencing between the neighboring points will be
largely reduced, benefiting a linear formation of the follow-
on phase estimation [22]. The differencing network can be
constructed by local Delaunay triangulation [23] or k-nearest
neighbor algorithm [24]. The high density of network allows a
redundant set of differential measurements (not only between
nearest ones), which aids a reliable spatial integration [25].
For a specific arc, we assume that �φ =

(�φ1,2,�φ1,3, . . . ,�φm,n, . . . ,�φN−1,N )
T

is the vector
of wrapped phase difference in N(N − 1)/2 interferometric
pairs, and �ϕ = (�ϕ1,�ϕ2, . . . ,�ϕm, . . . ,�ϕN−1)T is the
vector of unknown phase difference for N − 1 sequential
intervals. The function model for the phase chain at arc is
expressed as

B�ϕ = �φ (3)

with

�ϕ̂ = (BT P̄B)
−1
BT P̄�φ

V = �φ − B�ϕ̂

vm,n = �φm,n − bm,n�ϕ̂ (4)

where B is the design matrix that connects interferometric
pairs and sequential intervals through the combination of 0 and
1. �ϕ̂ represents the estimate of �ϕ. V is an (N(N−1)/2)×1
residual vector and vm,n represents one element of V , bm,n

indicates one element of B, and P̄ is called the equivalent
weight matrix, which adjusts the influence of observations
to fit the actual accuracy of the corresponding observations
[26]. We remark that in (3), the phase difference observations
with ambiguities will be detected as outliers and suppressed
by iterative WLS operation.

C. Iteratively Weight Updating

The purpose of iteratively weight updating is to provide
robust estimates that are unaffected by outliers or skewed
residual distributions. This is performed by making use of
information from all observations while assigning less or even
zero weight to those observations with large residuals [27].
The unusual observations in this study are attributed to not
only the phase ambiguities but also the phase error due to
coherence estimation bias and signal inconsistency in the
averaged area [18]. To mitigate these effects, the equivalent
weight matrix P is used which can be expressed as

P = P ◦ G (5)

where P is the initial weight matrix which has a diagonal
form and can be determined by the coherence matrix and
multilooking factor (see the Appendix). G is also a diagonal
matrix diag(g1,1, g2,2, . . . , gm,n, . . . , gN,N ), where the diag-
onal element represents the down-weighting factor for each
observation and the expression varies depending on different

Fig. 2. Curve of the biweight function, where c is a tuning constant depending
on the distribution of samples.

down-weight functions. In this study, we choose the commonly
used biweight function as (see Fig. 2)

gm,m =
⎧⎨
⎩

[
1− (

um,m
/
c
)2]2

, |um,m | ≤ c

0, |um,m | > c
(6)

with

um,m = vm,m

s
√
1− hm,m

(7)

where um,m represents the normalized residual, hm,m is the hat
value giving the leverage of observations [28] which is derived
from the diagonal element of B(BTB)

−1
BT, s is the median

absolute deviation (MAD), and c is a tuning constant which
is usually set as 4.685, producing 95% efficiency at normal
distribution [29].
As a summary, the solution of (4) can be derived in the

following three steps.

1) Use the initial weight matrix P to replace P and derive
the initial solution by (4).

2) Based on the LS residuals in (4), calculate the down-
weight factor matrix by (6) and (7), and perform WLS
estimation again with the updated weight matrix by (5).

3) Repeat step 2) until
∣∣�ϕ̂b+1 − �ϕ̂b

∣∣ < η; η is a
predefined threshold.

D. Low-Quality Arc Rejection

It should be noted that the iterative weight updating scheme
has an upper limit (up to 50%) to resist unusual observations
[27], and therefore, the arc measurements that are corrupted
by overwhelming outliers or decorrelation noise should be
discarded. The low-quality arcs can be detected by equivalent
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temporal coherence (ETC)

γP =
∣∣∑ P · ei(�φ−B�ϕ̂)

∣∣
tr(P)

(8)

where tr(·) is the operator for calculating the trace of a
matrix. The merit of using the weight matrix P in (8) is that
it suffers less effect from outliers in observations by assigning
zero weight on them. By setting threshold γ thre

P
, the suspected

arcs with γP ≤ γ thre
P

are discarded. Generally, the value of
γ thre
P

can be set as 0.7–0.9 [6], [18], and it will be further
discussed in Section III-A. Moreover, the observations with
undetected phase ambiguities are further removed by triplet
closure in space, where the closure threshold can be set as
1 rad [22], [30].

E. Spatial Integration

After calculating the unwrapped interval phase chain at
arcs and removing the low-quality arcs, the isolated points
should be detected and deleted to avoid local errors of spatial
integration [31], [32]. As aforementioned, the reconstructed
phases at pixels with different scattering mechanisms have
different noise levels. The inconsistency of phase quality at a
given arc can be addressed by the posteriori covariance matrix
[26]

D�ϕ̂ = (BTPB)
−1

σ̂ 2
0 (9)

with

σ̂ 2
0 = VT PV

M ′ − (N − 1)
(10)

where D�ϕ̂ is the posteriori covariance matrix of the estimated
�ϕ̂, and M ′ is the number of effective observations after out-
lier removal based on the biweight function. The unwrapped
interval phase vector at each pixel then can be derived by
performing WLS on the estimated phase chain with the
posteriori variances of arcs. Assuming the remained network
includes E points and F arcs, the formulation between the
phase �m at points and the phase difference at arcs for each
interval epoch is expressed as

Aδϕm = �ϕm (11)

with

δϕm = (ATWm A)
−1
ATWm�ϕm (12)

where A is the network matrix linking points and arcs, in
which the reference point has been removed. The network
matrix has the form

A =

⎡
⎢⎢⎢⎣

1 0 −1
0 1 · · ·
...
0

...
0

...
1

· · · 0
−1 0
...
0

...
−1

⎤
⎥⎥⎥⎦ (13)

where 1 represents the starting point and −1 corresponds to
the ending point along each arc. W is an F × F diagonal
matrix, of which the element is determined by

Wm = diag

(
1

d�ϕ̂m
1
+ε

,
1

d�ϕ̂m
2
+ε

, . . . ,
1

d�ϕ̂m
i
+ε

, . . . ,
1

d�ϕ̂m
E
+ε

)
(14)

Fig. 3. Flowchart of the proposed method.

where ε is a small positive constant to avoid the denominator
being zero. It should be noted that as the interferometric phase
is a relative measurement, the scatter noise of the reference
point will manifest itself in other points through network
differencing and integration. To mitigate this error, before
spatial integration, we select a high-coherence point (e.g.,
PS) as the reference. Then, spatial integration is implemented
for each interval epoch with respect to the reference point.
Because the reference point may not be stable, after spatial
integration all points can be calibrated with respect to a new
reference point which is postulated as stable behavior in time
series.

F. Algorithm Flow

The algorithm flowchart is shown in Fig. 3, and the whole
procedure is described as follows.
1) For each pixel, calculate the complex coherence matrix

based on the identified SHPs.
2) Construct spatial network and build function model

between MM interferograms and phase differences in
sequential intervals at arcs.

3) At each arc, conduct WLS estimation to obtain the
interval phase differences by iteratively updating weight
matrix.

4) Calculate the temporal coherence and triplet closure
error at arcs and remove the arcs with low temporal
coherence or large triplet closure error.

5) Conduct weighted spatial integration based on
unwrapped phase difference and the associated
posteriori phase variance in each interval epoch.

III. SYNTHETIC DATA TESTS

To validate the proposed method and assess its performance,
a set of experiments are conducted based on synthetic data sets
in this section. We first test the robustness of the proposed esti-
mation on a single arc and then perform the overall evaluation
of phase reconstruction on simulated interferograms.

A. Test on a Single Arc

Observations at a single arc are generated with different lev-
els of decorrelation noise and outlier (i.e., phase ambiguities)
contamination. The baselines of interferograms generated from
23 SAR acquisitions are retrieved from the real Sentinel-1 data
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TABLE I

SENTINEL-1 DATA BASELINE INFORMATION

set (Frame 68, Track 11) (Table I) over Guangdong, China.
We use C-band Sentinel-1 data set in simulation because
the short wavelength and revisit cycle render the data set
sensitive to temporal decorrelation. For simplicity, we assume
a deformation signal with a rate of 5 mm/year at the arc.
Considering that the proposed method aims to recover the
unwrapped interval phases instead of the deformation signal,
such an assumption does not lose generality. The decorrelation
noise is generated from a random vector of complex values
that follow zero-mean CCG distribution. In this study, two
decorrelation models are introduced, that is, exponential decay
and seasonal decay. The former one is expressed as

γ m,n = γ0e
−Bm,n

T
τ0 (15)

where Bm,n
T is the temporal baseline between SAR acquisition

m and n, γ0 represents the initial coherence value, and τ0
is the time constant of the exponential decay rate. The sec-
ond decorrelation model has a more complex expression
as [33]

γ m,n = γ0e
−Bm,n

T
τ0 · e

T ·[cos( 2π
T (BmT +Bm,n

T −t0 ))−cos( 2π
T (BmT −t0))]

2πτ1 (16)

where Bm
T represents the date of maser observation, τ1 is the

time constant of the seasonal decay rate, and T and t0 are the
period and the initial time of seasonal variation, respectively.
The above two models manifest as two common decorrelation
behaviors in real cases [11], [18]. To investigate the robustness
of the proposed method in different circumstances, for each
decorrelation model, we construct four scenarios by varying
the model parameters. Table II lists the used model parame-
ters for each decorrelation scenario. Based on the simulated
decorrelation noise, the coherence matrices are computed from
23 acquisitions with 400 SHP samples using (15) and (16)
(Fig. 4).

Fig. 4. Estimated coherence matrices of the synthetic data with exponential
and seasonal decorrelation decay models. (a)–(d) Exponential decay. (e)–(h)
Seasonal decay. The decorrelation model parameters: case 1 is used in (a) and
(e), case 2 in (b) and (f), case 3 in (c) and (g), and case 4 in (d) and (h).

Fig. 5. RMSE of phase estimation by the proposed method under different
decorrelation scenarios. (a)–(d) Exponential decay. (e)–(h) Seasonal decay.
The decorrelation model parameters: case 1 is used in (a) and (e), case 2 in
(b) and (f), case 3 in (c) and (g), and case 4 in (d) and (h).

To validate the robustness of estimation to detect outliers
(i.e., phase ambiguity), we use all interferometric combina-
tions (i.e., 253 interferometric combinations) and randomly
add phase ambiguities into the original observations. The per-
centage of contaminated observations ranges from 1% to 50%
of the total interferograms. For each number of observations
that suffer phase ambiguities, we repeat 3000 times without
replacement and calculate the root-mean-square error (RMSE)
between the simulated and the estimated phase difference
in sequential intervals. Fig. 5 presents the estimation perfor-
mance of the proposed method under different decorrelation
scenarios. It can be seen that when the outlier percentage is
small, the estimation precision approximately approaches to
the lowest achievable standard deviation, which is calculated
by the Cramér–Rao bound (CRB) [34] based on the theoretical
coherence values. Closer inspection of Fig. 5 indicates that
with the decrease in the decorrelation noise level, the break-
point (i.e., the largest percentage of the outlier that the robust
estimation can tolerate without producing arbitrary results)
increases and reaches up to about 20% of the total obser-
vations. This means that even a portion of the observations
suffers phase ambiguities, and the method based on iterative
weight update can still provide stable results and the tolerance
percentage depends on the decorrelation noise level.
Meanwhile, during each estimation, we calculate the ETC as

an indicator of the posteriori quality of the arc. Comparing the
estimated RMSE and ETC reveals that once the estimation is
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TABLE II

DECORRELATION MODEL PARAMETERS FOR DIFFERENT SCENARIOS

corrupted by overwhelming phase ambiguities and/or decorre-
lation noises, the suspect arcs can be detected by the decline in
ETC measures. The detection of outliers facilitates the discard
of the corrupted arc measurements before subsequent spatial
integration. It is also observed that when ETC is less than 0.85,
the estimated phase differences significantly deviate from the
simulated values. Therefore, to be a conservative treatment,
the threshold of ETC is set as 0.85 or above.

B. Test on Interferograms

The effectiveness of the proposed method is tested and
compared with the state-of-the-art phase estimation methods
based on synthetic interferograms. In the test, we generate
two interferogram stacks using the Sentinel-1 baseline that
is shown in Table I. For simplicity, the components of each
interferogram include deformation, atmospheric delays, and
decorrelation noise. The deformation field is simulated using
peak function in MATLAB with a linear rate ranging from
−30 to 30 mm/year. The atmospheric delays are simulated
using a fractal surface with the fractal dimension being 2.2.
To investigate the phase estimation in different decorrelation
models, one interferogram stack only contains exponential
decay decorrelation noise, while the other one contains sea-
sonal decay decorrelation noise. Within each stack, to be
close to the real environment, we consider the mixture of
multiple decorrelation levels [35], [36]. Table III lists the
occupation percentages for different noise scenarios, of which
the decorrelation parameters are listed in Table II [15], [19].
Fig. 6 shows the average coherence maps from the two
interferogram stacks. Figs. 7(a) and (b) and 8(a) and (b)
display the simulated SM interferograms without and with
decorrelation noise, respectively.
We apply the proposed method to reconstruct the interval

phase chains from all interferometric combinations. Before
implementation, the coherence values and the multilooked
phases are calculated by spatially averaging over 9 × 9
windows. Figs. 7(c) and 8(c) show the SM interferograms
after spatial multilooking. After performing the proposed
estimation, we convert the derived unwrapped interval phases
into SM interferograms with respect to the first image [Figs.
7(d) and 8(d)]. The residuals between the reconstructed and
the simulated phase signals are shown in Figs. 7(e) and 8(e).
The accumulative phase residuals between the reconstructed
and the simulated phases have a mean value of 0.07 rad and a
standard deviation of 0.35 rad for exponential decay scenario,
and a mean value of −0.08 rad and a standard deviation
of 0.38 rad for seasonal decay scenario. As seen from Figs.
7 and 8, for both decorrelation decay models, the proposed
method provides an unbiased estimate. The decorrelated noise

Fig. 6. Average coherence maps in the estimated and theoretical values.
(a) and (c) Coherence estimated by 9 × 9 windows under exponential and
seasonal decay, respectively. (b) and (d) Their theoretical coherence values.

Fig. 7. Comparison of the original and reconstructed SM interferograms
in the exponential decay scenario. All SM interferograms use the first image
as the master image. (a) Original SM interferograms without decorrelation
noise. (b) SM interferograms with decorrelation noise. (c) Multilooked SM
interferograms. (d) Reconstructed SM interferograms by the proposed method.
(e) Phase difference between the reconstructed and the original phase.

is effectively filtered out, yielding reconstructed phases with
acceptable precision.
To further quantitively assess the performance of the pro-

posed method, we compare the method with the combination
of the state-of-the-art phase estimation (i.e., MLE [11], [14]
and EVD [16], [17]) and phase unwrapping methods (i.e.,
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Fig. 8. Comparison of the original and reconstructed SM interferograms
in the seasonal decay scenario. All SM interferograms use the first image
as the master image. (a) Original SM interferograms without decorrelation
noise. (b) SM interferograms with decorrelation noise. (c) Multilooked SM
interferograms. (d) Reconstructed SM interferograms by the proposed method.
(e) Phase difference between the reconstructed and the original phase.

Fig. 9. Performance assessment of different phase estimation methods
using simulated interferograms. (a) Exponential decay situation with estimated
coherence values. (b) Exponential decay situation with theoretical coherence
values. (c) Seasonal decay situation with the estimated coherence values.
(d) Seasonal decay situation with the theoretical coherence values. For
comparison, the CRB values of point cluster 1, which are calculated based on
the parameters of case 1 of exponential and seasonal decays, are also plotted
in four cases.

minimum cost flow (MCF) [37] and LS-fitting [38]) and a joint
filtering and unwrapping method based on Markov random
fields (JMRF) [39], [40]. As reflected in [15], [18], and [19],
the error in the coherence matrix could significantly degrade
the performance of phase estimation. To assess this impact,
we divide the estimation processes into two groups. In the first

TABLE III

OCCUPATION PERCENTAGES FOR DIFFERENT NOISE SCENARIOS

group, the coherence matrices are estimated using the window
size of 9 × 9. In the second group, the coherence matrices are
assigned with the theoretical values. Fig. 6 shows the compar-
ison of the estimated and theoretical average coherence maps.
It is clear that the window size of coherence estimation has an
obvious effect on coherence estimation. The 9 × 9 window
size can lead to the maximum coherence bias of about 0.1 in a
single interferogram. After the noisy phases are reconstructed
and unwrapped by the above methods, the RMSE between the
recovered and the simulated phase is calculated. The CRB for
the decorrelation scenario of case 1 in Table II is calculated
as well. Fig. 9 presents the comparison results of different
estimation methods. We notice that no matter for MCF or LS-
fitting phase unwrapping methods, when the coherence matri-
ces change from the estimated to the theoretical values, the
results of MLE and EVD vary significantly, manifesting their
strong sensitivities to the quality of coherence estimation.
Because both MLE and EVD reconstruct SM phase time
series through the inversion and the decomposition of the
coherence matrix, a small numerical bias of coherence will be
amplified during matrix conversion, degrading the estimation
precision. For the JMRF algorithm that only works for a single
interferogram, although it shows low sensitivity to coherence
bias, the phase recovery performance is limited by ignoring the
relationship among interferograms. In the case of the proposed
method, least difference is observed between the results of
using the estimated and theoretical coherence values. This is
because the proposed method iteratively adjusts the weight
matrix according to the posteriori residuals, promoting the
balance between the estimated coherence and the posteriori
residuals.
From Fig. 9, we also notice that when using the theoretical

coherence values, the proposed method still performs better
than the MLE +MCF and MLE+LS-fitting. Although the
MLE method has the best efficiency provided with a known
accurate coherence matrix, the optimization is restricted within
areas having a single decorrelation mechanism. Obviously,
in practice, it is rare that areas only have one decorrelation
mechanism. The MCF and LS-fitting algorithm ignore the vari-
ation in noise level due to the mixture of multiple decorrelation
mechanisms, degrading the unwrapping performance. It should
be noted that the CRB in four scenarios is always below other
estimation results. This is attributed to the mixture of four
decorrelation mechanisms (i.e., cases 1, 2, 3, and 4) which
degrade the overall estimation precision.
In terms of computational efficiency, it is difficult to com-

pare different methods, as the run-time strongly depends on the
implementation of different estimators. Excluding coherence
estimation and phase multilooking, a rough comparison is
presented in Table III based on a desktop PC with an Intel
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TABLE IV

COMPARISON OF THE COMPUTATION TIME (IN seconds) OF DIFFERENT
PHASE ESTIMATION METHODS

TABLE V

ALOS/PALSAR DATA BASELINE INFORMATION

i7 CPU and 64-GB memory. As can be seen from Table IV,
high computation time might be the main drawback of the
proposed method. Because the dense network and outlier
detector slow the computation efficiency. However, consid-
ering the unwrapped phase product is obtained and further
phase unwrapping procedure is no longer needed, the high
computation time is acceptable.

IV. REAL DATA TEST

A stack of 16 ALOS/PALSAR images over Zhouqu, China
(Table V) (Fig. 10), is chosen for assessment of the proposed
method. Located at the eastern edge of Qinghai–Tibet Plateau,
Zhouqu is characterized by steep terrain and alpine valleys,
which render this area vulnerable to landslide-related geohaz-
ards. On August 8, 2010, a large landslide in Zhouqu caused
widespread destruction and nearly 1800 casualties [41]. The
deformation phenomenon in this area has been analyzed by
conventional PSInSAR [3], [42], and it is suitable to validate
the effectiveness of the method in low-coherence environment.
Fig. 11 presents the spatiotemporal distribution of the radar
images. As apparent, some interferograms have long spatial
and temporal baselines, implying severe spatial and tempo-
ral decorrelation. Fig. 12(a) shows four examples of single-
looking SM interferograms with the first SAR acquisition
being the master image.
We apply the proposed method to reconstruct SM inter-

ferograms from all interferometric combinations [Fig. 11(a)].
The coherence value and multilooked phase for each pixel

Fig. 10. Shaded relief map over Zhouqu, China. The blue solid box outlines
the coverage of the ascending ALOS/PALSAR images (track 660) used in
this study. The red solid outlines the study area. The inset map shows the
location of the study area in China.

Fig. 11. Baseline configuration used in real data tests. (a) All interferometric
combinations. (b)–(e) Interferometric combinations with short temporal base-
line. Each SAR image has 12 lag interferograms in (b), 9 lag interferograms
in (c), 6 lag interferograms in (d), and 3 lag interferograms in (e). (f) SM
interferometric combinations using the sixth SAR acquisition as the master
image.

are calculated by adaptively averaging SHPs detected by
the Kolmogorov–Smirnov test [11]. To improve the spatial
stationarity within multilooking windows, we use AW3D30m
digital surface model (DSM) [43] to remove the topographic
phase contribution before coherence estimation. Based on the
coherence map, we initially select 1 220 475 coherent points
(including PSs and DSs) for network construction and interval
phase chain estimation. The arcs with low posteriori ETC
are discarded, resulting in 1 192 913 points kept for spatial
integration. The reconstructed interferograms can be visually
inspected from Figs. 12 and 13. Comparing Fig. 12(b) and
(c) shows that the decorrelation noise is effectively filtered
by the proposed method, revealing the importance of tem-
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Fig. 12. Comparison of the original and reconstructed SM interferograms
for ALOS/PALSAR images over Zhouqu, China. All SM interferograms use
the first image as the master image. (a) Represents SM interferograms
before multilooking. (b) Represents SM interferograms after multilooking.
(c) Represents the reconstructed SM interferograms by the proposed method
in wrapped form. Interferogram I has a perpendicular baseline of 1564 m
and a temporal baseline of 230 days. Interferogram II has a perpendicular
baseline of 3384 and a temporal baseline of 460 days. Interferogram III has
a perpendicular baseline of −333 m and a temporal baseline of 736 days.
Interferogram IV has a perpendicular baseline of 2193 m and a temporal
baseline of 1196 days.

poral filtering other than spatial multilooking. Fig. 13 shows
the comparison of the recovered unwrapped interferograms
between the proposed method and the combination of the
existing phase estimation (i.e., MLE and EVD) and phase
unwrapping (i.e., MCF and LS-fitting) methods. It can be
noticed that the phase jumps are identified from the unwrapped
results of both MCF and LS-fitting on the lower right of
the SAR image. In terms of phase estimation, the proposed
method shows the best performance in reserving the sliding
deformation signal in the middle of the SAR image.
The performance of using interferogram subsets is evaluated

as well. Fig. 11(b)–(e) depicts the baseline configurations for
four subsets of combinations. By setting the result of using all
interferometric combinations [Fig. 11(a)] as a benchmark for
this analysis, we calculate the accumulative phase differences
between using the subsets and all combinations. Fig. 14 shows
the histograms of the accumulative discrepancies for differ-
ent subsets used. We can notice that the estimations using
four kinds of subsets [i.e., Fig. 11(b)–(e)] provide unbiased
estimation with respect to that using all combinations. How-
ever, the discrepancies are governed by the total number of
combinations. As depicted, when the number of lag interfer-
ograms for each SAR image reduces from 12 to 3, the phase
discrepancies rapidly increase, indicating the performance of
estimation declines with the number of interferometric com-
binations. Therefore, to preserve high estimation precision,
a large number of interferometric combinations are necessary
for practical implementation.
To further validate the performance of phase estima-

tion, we retrieve the deformation field based on the SM

Fig. 13. Comparison of the recovered unwrapped SM interferograms between
the proposed method and the combination of the existing phase estimation
and phase unwrapping methods. (a) Represents the recovered unwrapped
SM interferograms by MLE and LS-fitting. (b) Represents the recovered
unwrapped SM interferograms by MLE and MCF. (c) Represents the recov-
ered unwrapped SM interferograms by EVD and LS-fitting. (d) Represents the
recovered unwrapped SM interferograms by EVD and MCF. (e) Represents
the recovered unwrapped SM interferograms by the proposed method.

Fig. 14. Histograms of the accumulative discrepancies between using subsets
and all combinations by the proposed method.

interferograms that are constructed from the estimated
unwrapped interval phases. As the interferograms have no
phase ambiguity, topographic residuals and atmospheric delays
can be efficiently separated by [31] and [44]. For com-
parison, we apply the standard PSI to process the original
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Fig. 15. Comparison of the deformation rate maps for the study area using
(a) StaMPS PSI processing and (b) the proposed method.

single-looking interferograms [see the baseline configuration
in Fig. 11(f)] using StaMPS software [45]. Fig. 15 presents
the deformation rate maps from StaMPS and the proposed
method. It can be seen that the deformation fields from
the two methods are in good agreement, where the slopes
facing the northeast show downslope movement with a line-
of-sight velocity up to 5 cm/year. The deformation results
are also consistent with previous studies about the Zhouqu
landslides [3], [42]. It is also visible that through the phase
estimation procedure, the spatial density of the coherent
points significantly increases. The notable improvement in
point density facilitates identifying sliding regions and further
interpretation of landslide behavior.

V. CONCLUSION

In this article, we have proposed an arc-based method
to reduce the decorrelation noise and reconstruct unwrapped
interval phase chain aiming to improve the coverage of
InSAR deformation map over low-coherence environments.
Specific concern is given to the interval phase chain recovery
from coherent measurements of PS and DS. The core of
the reconstructing interval phase relies on two successive
WLS procedures in time and space. The main advantage
of the proposed method lies in its robustness despite the
coherence estimation bias and the inconsistent noise levels due
to different decorrelation mechanisms. The derived unwrapped
phase saves extra computation burden for phase unwrapping.
In addition, the linear formation makes the implementation
flexible for a small subset of interferograms.
We demonstrate the effectiveness of the method from exten-

sive experiments using simulated and real SAR data sets.
The simulation experiments show that despite the coherence
estimation error, the method can achieve stable estimation. The
simulation also shows that using weighted spatial integration
according to the posteriori phase variance outperforms the
state-of-the-art methods in the case with different decorrela-
tion mechanisms. In the real data application over Zhouqu,
the reconstructed phases extend the coverage of measurement
points compared with PSI processing, facilitating landslide
identification and further interpretation.

APPENDIX

This appendix is dedicated to the description of the deter-
mination of the initial weight matrix during arc estimation.
As aforementioned, the initial weight matrix P has a diagonal
form

P = diag(p1,1, p2,2, . . . , pm,n, . . . , pN,N ). (17)

Because the arc observations represent the phase differences
from two connected points, the diagonal element of P can be
defined based on the combination of weight factors of two
coherent points

pm,n
x,y = 1

1/pm,n
x + 1/pm,n

y
(18)

where x and y correspond to point indexes. For a single
coherent point, the weight factor can be determined by the
Fisher information index of interferometric phase [18]

pm,n
x = 2L(γ m,n

x )2

1− (γ m,n
x )

2 (19)

where m and n are the indexes of the SAR image. By combin-
ing (18) and (19), the initial matrix for each arc observation
can be uniquely determined according to the coherence matrix
and multilooking factor of the connected coherent points.
We remark that for point-wise PS measurement, because its
coherence value is always equal to one [11], the initial weight
matrix between two PS measurements can be defined as the
diagonal element of an identity matrix

PPSx,y = I N(N−1)/2. (20)
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