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Landslide monitoring and runout hazard assessment
by integrating multi-source remote sensing
and numerical models: an application to the Gold Basin
landslide complex, northern Washington

Abstract The landslide complex at Gold Basin, Washington, has
been drawing considerable attention after a catastrophic runout of
the nearby landslide at Oso, Washington, in 2014. To evaluate
potential threats of the Gold Basin landslide to the campground
down the slope, remote sensing and numerical modeling were
integrated to monitor recent landslide activity and simulate hypo-
thetical runout scenarios. Bare-earth LiDAR DEM (digital eleva-
tion model) differencing, InSAR (Interferometric Synthetic
Aperture Radar), and offset tracking of SAR images reveal that
localized collapses at the headscarps have been the primary type of
landslide activity at Gold Basin from 2005 to 2019, and currently
no signs indicative of movement of a large centralized block or a
deep-seated main body were detected. The maximum horizontal
deformation rate is 5 m/year occurring primarily from headscarp
recession of the middle lobe, and the annual landsliding volume of
the whole landslide complex averages 1.03 × 105 m3. From three-
dimensional limit equilibrium analysis of generalized terrace
structures, the maximum landslide volume is estimated as 2.0 ×
106 m3. Simulations of hypothetical runout scenarios were carried
out using the depth-averaged two-phase model D-claw with above-
obtained landslide geometry constraints. The simulation results
demonstrate that debris flows with volume less than 105 m3 only
pose limited threats to the campground, while volumes over 106 m3

could cause severe damages. Consequently, the estimated maxi-
mum landslide volume of 2.0 × 106 m3 suggests a potential risk to
the campground nearby. Adaption of our methodology could
prove useful for evaluating other similar landslides globally for
hazards prevention and mitigation.

Keywords Slope stability . Remote sensing . SAR . Debris
flow . Runout modelling

Introduction
The Gold Basin landslide in Washington has been drawing con-
siderable attention from officials and local residents after the
devastating 2014 landslide at Oso, Washington (Wartman et al.
2016; Iverson et al. 2015), which damaged 49 houses down the
slope and caused 43 fatalities. The two landslides are separated
by only 23 km (Fig. 1a) and have measurable similarities in terms
of terrain setting, slope angle, and historical failures. Both slides
have rivers flowing through the toes that influence landslide pro-
cesses by eroding the landslide toe, and could potentially increase
flow mobility and inundation extent in the event of a failure. An
important distinction between these two landslides is their mor-
phological settings. The landslide complex at Gold Basin is com-
prised of three separate stream valleys with deeply incised
channels (Fig. 1b). The valleys contain deep-seated landslide

deposits which form moderately sized landslide blocks with gentle,
hummocky terrain immediately upslope from the channel inci-
sions (Fig. 1b, d). In contrast, the landslide at Oso, WA expresses a
distinct stairstep pattern typical of a recent landslide involving
large blocks (Fig. 1c, e, f). Comparison of the hillshade images of
Gold Basin and Oso suggests that the landslide complex at Gold
Basin may have experienced a large event similar in size to the
2014 event at Oso (Figs. 1c and 2a), but the original landforms have
been greatly modified by subsequent fluvial erosion and mass
wasting (Fig. 2a).

For the Gold Basin landslide, runout events pose direct threats
to a popular campground located on the opposite side of the
Stillaguamish River (Fig. 2a). The campground has been closed
since 2014 out of safety concerns, and a detailed hazard assessment
is required prior to reopening. In addition to a potential runout
event, fine-grained sediments derived from the landslide complex
have been persistently transported into the South Fork
Stillaguamish River where it negatively impacts migrant salmon
spawning grounds that are of critical importance to the
Stillaguamish Tribe (Shannon Wilson Engineers 1954; Staisch
2018). To better evaluate the Gold Basin landslide complex, we
utilized both remote sensing and numerical simulations to assess
slope stability and evaluate the potential inundation extent.

Field surveys are traditionally relied upon for monitoring land-
slide movement and slope stability. Ground instrumentation, such
as GPS, extensometers, and tiltmeters, provides reliable and accu-
rate measurements and has been widely used for monitoring
dangerous landslides that directly threaten human safety (Angeli
et al. 2000; Terzis et al. 2006). In addition, remote sensing tech-
niques that exploit increasingly available data resources such as
LiDAR (Light Detection and Ranging) DEMs, space- and airborne
optical images, and SAR (Synthetic Aperture Radar), which pro-
vide remote access with wide spatial, radiometric, spectral, and
temporal coverage, have greatly improved the efficiency of land-
slide detection and mapping (e.g., Fruneau et al. 1996; Squarzoni
et al. 2003; Colesanti and Wasowski 2006; Xu et al. 2019). However,
despite multiple available data sources, remote sensing surveil-
lance of slopes in particular terrains and at certain times still
presents challenges due to current technical limitations. The effec-
tiveness of utilizing SAR images for landslide studies depends on
their spatial resolution, wavelength of the SAR signal, the revisit
cycle of SAR satellites, the look angle of SAR sensors, and the
motion rate of landslides (e.g., the InSAR method may not be
effective for rapidly moving slides), while that of LiDAR is primar-
ily affected by available repeated acquisitions. For the free or low-
cost optical images from satellite platforms such as Landsat and
Sentinel-2, coarse spatial resolution and cloud coverage are the
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two key limiting factors. Consequently, a single remote sensing
device might not be adequate to detect and monitor some land-
slide scenarios (e.g., a small localized collapse of a steep slope at a
particular time). Nevertheless, integrating multiple remotely
sensed datasets and employing suitable interpretation methods
provide a potential solution for certain difficult cases.

In order to evaluate the potential runout and inundation extent,
should a slope failure lead to a rapidly flowing landslide and debris
flow, we employed numerical modeling using the D-claw package
(George and Iverson 2014). D-claw is a depth-averaged two-phase
model that simulates granular flow dynamics based on conservation
of mass and momentum, and accounting for the important feed-
backs between solid grain concentrations and the basal pore-fluid
pressure that regulate flow resistance and mobility, based in part on
the theory of granular dilatancy for shearing soils (Iverson and
George 2014). Running a D-claw model requires a hypothetical
landslide basal slip surface that defines the initial landslide volume
and geometry (George and Iverson 2014; Iverson et al. 2015).

This investigation focuses on using multiple remote sensing
datasets to monitor movement of the Gold Basin landslide com-
plex, which also helps constrain initial, hypothetical landslide
source geometries as an input for the D-claw simulations of
runout scenarios. Due to the steep slopes and large yet localized
deformation, multiple SAR processing methods are employed to
characterize the landslide motions. D-claw simulations are

subsequently performed to evaluate the potential hazard zone.
Our methodology of evaluating landslide runout hazards devel-
oped for this case study can be easily adapted for other similar
landslides globally to assist on hazard prevention and mitigation.

Geological setting and history

Regional setting
The Gold Basin landslide complex, located in Snohomish County,
Washington (Fig. 1a, b), lies above the South Fork of the Stillaguamish
River in the Cascade Range (Fig. 2a). The landslide complex’s elevation
ranges from 325 to 495 m above sea level and consists of three small,
steep tributary valleys that form three separate lobes on the north valley
wall and transport landslide debris and sediment downstream to the
Stillaguamish River through valley channels (Fig. 1b). The valleys at
Gold Basin were originally filled with recessional glacial deposits to a
substantial depth of 175 m. The river has cut through deposits (Benda
and Collins 1992; Staisch 2018) and form steep-sided valley walls
exposing the glacial stratigraphy (Miller and Miller 1999; Miller 2019).
Stratigraphy is vertically and laterally heterogeneous with discontinu-
ous lenses of silt and clay interspersed in sandy river deposits. Field
observations and lab tests indicate that there is a 52.6-m-thick water-
perching layer (400.9–453.5 m above sea level) of silt and clay between
strata of poorly sorted gravels and sands in the stratigraphy of the
middle lobe (Fig. 2b; McCabe 2016).

Fig. 1 Comparison between the Gold Basin landslide and the Oso landslide. a Geographic locations of the Gold Basin landslide complex (red square) and the Oso landslide
(red triangle), with the annotation WA=Washington. Hillshade images of b Gold Basin landslide complex (red polygon) and c Oso landslide. Cyan polylines in b represent
stream valleys and the yellow square outlines the headscarp shown in d. True-color images of Oso slide e before and f after the 2014 runout event. Images were obtained
from Google Earth. LiDAR DEMs were accessed from the Washington State Department of Natural Resources
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Historical landslide activity
Three relatively large historical runout events have been recorded at
Gold Basin, though the involved lobes varied over time. Cycles of small
localized collapses and erosion have been occurring intermittently over
many decades, followed by subsequent revegetation. The earliest
recoded landslide activity can be traced back to 1942 (Benda and
Collins 1992). The landslide source was confined to the lower portions
of the middle lobe and the eastern-most lobe, and the active area was
approximately a quarter of the much larger 1964 landslide. The 1964
event occurred in the eastern-most lobe and formed a fan at the mouth
of that lobe, as indicated by the exposed bare ground in aerial images
(Fig. 3; Miller and Miller 1999). Subsequent vegetation regrowth eventu-
ally obscured the fan, and by 1983 the river had eroded back the toe of

the eastern-most lobe (Miller 2019). The most recent debris flow oc-
curred in 1996, in the middle and western-most lobes. Debris deposits
blocked the river and had shifted the channel to the south where it
currently remains. The evolution of the channel course is apparent
by comparing the 1995 and 2007 images of the site (Fig. 3).

Methodology and data

Measuring landslide movement using remote sensing

LiDAR DEM differencing
LiDAR DEMs have proven to be an effective tool for landslide
detection because of their high spatial resolution and high

Fig. 2 Geographical and geological setting of the Gold Basin landslide complex. a The Gold Basin landslide (red polygon) comprises part of a larger landslide complex
(dashed blue polygon) that is bisected by a stream channel (annotated as Stream channel in Fig. 2a). A campground is located on the opposite side of the South Fork
Stillaguamish River. b Elevation profile along A-A’ in c and a generalized stratigraphy obtained by McCabe (2016). Soil types were classified following the Unified Soil
Classification System (USCS), with GP=poorly graded gravel, MH=silt of high plasticity and elastic silt, CH=clay of high plasticity and fat clay, and SP=poorly graded sand. c
A true-color image of the slide obtained in July 2018 from Google Earth
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measurement accuracy (e.g., Hodgson et al. 2003; Roering et al.
2009). The sub-meter-level spatial resolution and the centimeter-
level absolute accuracy provide reliable and accurate measure-
ments of landslide motions, ranging from localized small displace-
ments to large runout events. Moreover, landslide detection
with LiDAR point clouds is largely impervious to the influ-
ence of vegetation, slope angle, and ground features. However,
at the state level, there is presently limited LiDAR spatial
coverage, and typically the datasets are very sparse in terms
of repeated temporal sampling. Considering the Gold Basin
region, for example, LiDAR DEMs are only available for years
2005, 2006, 2013, and 2016 and lack full spatial continuity for
the project area, which is essential for differencing. Neverthe-
less, hillshade images produced from high-resolution DEMs
facilitate interpretation of landforms and provide insights into
the landslide processes (Fig. 2a). In this investigation, we
applied DEM differencing to all available LiDAR DEMs in
the Gold Basin region to quantify the deformation rates and
landslide volumes from 2005 to 2016.

InSAR
InSAR (Interferometric Synthetic Aperture Radar) methods
are focused on the phase information of SAR backscattering
and can optimally provide up to millimeter-level measurement
accuracy along the LOS (line of sight) direction (e.g., Hanssen
2001). However, substantial pixel displacements can present
coherence degradation and unwrapping problems (e.g., Lu
and Dzurisin 2014). Consequently, applying InSAR to measure
landslide movements with high deformation gradients (phase
difference between two adjacent pixels exceeds π/2) requires
additional data inputs or assumptions of displacement pat-
terns (e.g., Xu et al. 2019). The long-wavelength L-band data
generally maintain better coherence in vegetated terrains and

yield better interferometric results than the shorter wavelength
C-band and X-band SAR images (Xu et al. 2019).

As LiDAR DEMs are unavailable after 2016, we processed
all available SAR data from the L-band ALOS-2 PALSAR-2, the
C-band Sentinel-1A/B, and the X-band TerraSAR-X to detect
recent landslide activities between 2017 and 2019 using the
InSAR method.

SAR intensity differencing and pixel offset tracking
SAR intensity refers to the strength of the reflected signal from
ground objects. Landslide activity that causes measurable changes
of the backscattering signal can be detected by differencing SAR
intensity images (e.g., Plank et al. 2016). However, solely differenc-
ing SAR intensity changes cannot confirm a landslide activity, as
other factors, such as changes in soil moisture and variations in
forest-cover density (associated with wildfire, disease, or silvicul-
tural activities such as timber harvest thinning or fuel manage-
ment), also cause fluctuation of backscattering signals. An
alternate approach is to track pixel offsets between two SAR
intensity images using cross correlation (e.g., Strozzi et al. 2002;
Singleton et al. 2014). The offset tracking accuracy can reach 1/20
to 1/10 pixels (Hanssen 2001). We applied both SAR intensity
differencing and pixel offset tracking to detect recent landslide
activity at Gold Basin.

First, we implemented intensity change detection methods on
the high-spatial-resolution TerraSAR-X data from Jan 2017 to
March 2019 to detect the existence of highly localized deforma-
tions. As a single-look SAR image generally contains significant
speckle noises (e.g., Hanssen 2001), we multi-looked every image
with a 3 × 3 multi-look factor and averaged five images acquired in
the same season to form one image for detecting intensity changes.
Three SAR intensity images of years 2017, 2018, and 2019 were
generated by averaging SAR images acquired between January and

Fig. 3 Historical images of the Gold Basin landslide. The 1964–2003 figures are adapted from Miller and Miller (1999) and Miller (2019). Bright features represent areas
with bare ground. The 2007–2018 figures were obtained from Google Earth
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March in corresponding years (~ 5 images for each year), and then
utilized to calculate intensity changes.

Second, we applied the pixel offset tracking method to the same
Tandem-X datasets from 2017 to 2019. Unlike the intensity change
detection, pixel offset tracking can provide quantitative measure-
ments of landslide movement. Similarly, we averaged five SAR
intensity images between January and March of each year, before
conducting offset tracking. Here, we did not employ multi-
looking, because multi-looking would increase pixel size and con-
sequently reduce offset tracking accuracy. Pixel offset tracking was
carried out twice iteratively with downscaling window sizes. A
window size of 64 × 64 pixels was set for the first round of offset
tracking, and the output was used as the input for the second
round of offset tracking after eliminating offset anomalies.
The second round started with a smaller window size of 32
× 32 pixels, and the final results were smoothed using a
moving window of 2 × 2 pixels.

Runout scenario simulation

D-claw model
D-claw is a depth-averaged two-phase model that combines the con-
cepts of critical-state soil mechanics, grain-flow mechanics, and fluid
dynamics (Iverson and George 2014). The model’s five balance equa-
tions describe coupled evolution of the solid volume fraction, basal
pore-fluid pressure, flow thickness, and two components of flow veloc-
ity. The model incorporates the theory of soil dilatancy in order to
mediate the feedback effects of soil-shearing and fluid-pressure-
dependent mobility and resistance (Iverson and George 2014). Adjust-
able parameters in the model are based on well-established and mea-
surable material quantities (e.g., initial porosity, hydraulic permeability,
solid-matrix elastic compressibility) In lieu of site-specific studies of
these parameters, they are constrained to reasonable bounds by sedi-
ment tests of materials in analogous studies or geologically similar
regions (see, e.g., Iverson et al. 2010, 2015).

The predicted debris flow behavior initiated from a landslide
failure is influenced by several non-dimensional quantities identified
by Iverson and George (2014) and depends on landslide initial condi-
tions and evolving material properties. These quantities include the
difference between the initial solid volume fraction of sediment and
an evolving equilibrium solid volume fraction,m0−meqm. The evolving
equilibrium volume fractionmeqm depends on the state of flow variables
and an initial, or critical equilibrium mcrit, which represents the quasi-
static equilibrium volume fraction prior to motion. The sign of m0−
meqm determines whether soils are in a contractive state in which initial
shearing leads to increasedmobility, or a dilative state in which shearing
decreases mobility. The two alternative states of the material lead to
either positive feedbacks and flow acceleration or negative feedbacks
and flow stabilization and deposition. For characterizing hazards that
may result from high-mobility landslides, the former, generally
a contractive initial state of debris is assumed.

Log-spiral basal surfaces
To simulate hypothetical runout scenarios using the D-claw pack-
age, landslide basal slip surfaces are required. In lieu of additional
site-specific data, basal surfaces are typically assumed to have
longitudinal transects that conform to a logarithmic-spiral shape,
a commonly assumed feature of idealized landslide scarps. For a
homogeneous slope and assuming a visco-elastic rheology of

shearing soils, the Mohr-Coulomb yield criterion leads to a
logarithmic-spiral failure surface (Baker and Garber 1978; Chen
1975). In a polar coordinate system, the log-spiral is described as

r ¼ r0eθtanφ ð1Þ

where r is the spiral radius, θ is the rotation angle with clockwise
from the horizontal being positive, r0 is the radius value for θ=0°,
and ϕ is the internal friction angle of landslide material.

In the longitudinal direction, a vertical profile of the basal
surface can be uniquely determined if two intersection points with
the ground topography and the two corresponding intersection
angles are given. A continuous three-dimensional basal surface
can be constructed by interpolating or fitting multiple longitudinal
log-spiral profiles. For smoother surfaces, fitting multiple curves
in the transverse direction can be employed. We used the 2016
bare-earth LiDAR DEM for constructing hypothetical log-spiral
basal surfaces and for runout topography.

Landslide volume estimations
We obtained the annual average movement volume of the Gold
Basin landslide complex as 1.03 × 105 m3/year by differencing the
2005 and 2016 LiDAR DEMs.

The maximum landslide volume was estimated from the soil
stratigraphy of the Gold Basin landslide complex (Fig. 2b) based
on Perkins et al.’s (2017) simplified model. Three-dimensional
limit equilibrium analysis of typical glacial stratigraphy consisting
of a weak unit (advance glaciolacustrine deposits) between two
strong units (advance outwash sands) in northern Washington
demonstrates that the thickness and position of the weak unit
exert a considerable influence on potential landslide volumes
(Perkins et al. 2017). In fact, typical landslide volumes can be
readily estimated based on geographical information regarding
the geometry of the weak layer and the location of the landslide.
Such estimates have been performed and validated by field surveys
of multiple landslides along the Skagit River and North Fork
Stillaguamish River regions (Perkins et al. 2017). For instance,
the estimated maximum volume for the Oso landslide is 9.8 ×
106 m3 (Fig. 4), close to the volume of 7.3 × 106 to 9.2 × 106 m3

measured from LiDAR DEMs (Iverson et al. 2015). For the Gold
Basin landslide, terrace height above the Stillaguamish River is 170
m; thickness of the weak layer composed of clays and silts is 52.6
m; and the elevation difference between the layer top and
Stillaguamish River is 128.5 m (Fig. 2b). Applying Perkins et al.’s
(2017) simplified model (Fig. 4) in this case implies an estimate of
2.0 × 106 m3 for the maximum landslide volume.

D-claw simulation setup
To evaluate potential inundation extents of the Gold Basin land-
slide complex, we simulated 12 scenarios. These scenarios can be
categorized into two groups, with each group employing a single
value of m0 −mcrit. Six different initial volumes ranging from 5.7 ×
104 to 4.5 × 106 m3 were simulated for each group. We set
mcrit=0.62 in all of the scenarios, which is commensurate with
material that has a relatively high mud content of the formed
debris (McCabe 2016; Iverson et al. 2010). Values satisfying m0 <
mcrit correspond to relatively mobile debris flows that are
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contractive, which is believed to be representative of the 2014
debris flow that occurred at Oso, Washington (Iverson et al.
2015), while m0 >mcrit corresponds to less mobile runout behav-
iors as soils dilate during failure (Iverson et al. 2000).

Results

Remote sensing of landslide activity

LiDAR DEM differencing
Differencing of 2005 and 2016 DEMs reveals that substantial local-
ized deformation of the western-most and middle lobes occurred,
with a maximum displacement of ~ 30 m, while only slight defor-
mation was observed at the eastern-most lobe (Fig. 5a). From 2013
to 2016, some localized yet substantial collapses (about 10 m in

displacement) appeared at the headscarp of the middle lobe (Fig.
5b). Similar substantial deformation was also captured by terres-
trial LiDAR from July 2015 to January 2016 (McCabe 2016). As the
overlap region of the 2013 and 2016 DEMs only covers the head
section of the slope, it is not clear whether localized movements
also occurred at the lower sections from 2013 to 2016. Nearly no
deformation occurred between June 2005 and March 2006.

InSAR
We processed all available SAR acquisitions from ALOS-2
PALSAR-2, Sentinel-1A/B, and TerraSAR-X. However, only the L-
band ALOS-2 imagery produced useful interferograms for identi-
fying ground deformation due to severe coherence loss of the
shorter-wavelength C-band Sentinel-1A/B and X-band TerraSAR-
X images. Five active landslides nearby Gold Basin were detected

Fig. 4 Estimated maximum landslide volume within 10% of minimum FoS (factor of safety). The figure was adapted from Perkins et al. (2017). Square and triangle denote
Gold Basin landslide (2.0 × 106 m3) and Oso landslide (9.8 × 106 m3) respectively. Zw and tw stand for bed-top height and thickness of the weak layer respectively, and H
denotes thickness of the whole terrace

Fig. 5 Slope deformation captured by LiDAR DEMs. DEM changes a from 2005 to 2016 and b from 2013 to 2016. Slightly white-shaded regions represent overlaps of two
DEMs
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by an ALOS-2 interferogram spanning from 2016 to 2017 (Fig. 6),
yet deformation signals at the Gold Basin landslide complex were
not distinguishable due to poor coherence there. The most likely
reason is that the relatively coarse spatial resolution (~ 10 m) and
look angle (~35°) of ALOS-2 PALSAR-2 limited its ability to cap-
ture highly localized deformation on a steep slope. Indeed, the top
50 m of the middle lobe of the landslide complex is nearly
vertical (McCabe 2016; Drury 2001), which would cause shad-
ow or layover effects for the right-side-looking SAR acquisi-
tions (e.g., Hanssen 2001).

SAR intensity changes and pixel offset tracking
As shown in Fig. 7, significant intensity changes of TerraSAR-X SAR
images from 2017 to 2019 were detected at the headscarp and western
side of the middle valley. The intensity changes varied from − 2 to 2 dB
depending on the location. Small intensity changes were observed at the
riverbank at the mouth of the middle valley. However, the detected
intensity changes do not irrefutably confirm landslide activity, because
soil moisture variations or vegetation growth/removal may have also
contributed to the changes.

The offset tracking results confirm that localized but significant
deformation was present at the middle lobe between 2017 and 2019.
The most notable deformation occurred near the headscarp, which
shifted by about 10 m. The riverbank near the mouth of the middle
valley also had significant erosion of about 7m.We did not observe any
conspicuous signs that would indicate the movement of a large, cen-
tralized block, or main body.

Simulations of hypothetical runout scenarios
We simulated 12 scenarios with varied volume-mobility combinations to
assess the potential inundation extents of the Gold Basin landslide com-
plex in the event of a failure. Figures 8 and 9 depict the simulated runout
scenarios as m0−mcrit= 0.02 and m0−mcrit= − 0.02 respectively. Note
thatm0 <mcrit corresponds to relativelymobile debris flows, whilem0 >
mcrit corresponds to less mobile ones. Comparison of the two groups
demonstrates a large disparity in the risk posed to the campground area,
based solely on the debris flow mobility given the same initial landslide
volume: a more mobile debris flow would cause more damages to the
campgroundby increasingboth inundationextentanddeposit thickness,
provided the same landslide volumes.

Fig. 6 Detected active landslides nearby Gold Basin from an ALOS-2 interferogram spanning from 2016 to 2017. Small windows on the right show the close-up of each
landslide. One fringe represents a line-of-sight range change of 12.1 cm. The Gold Basin landslide complex is outlined in red. Black dots are layover and shadow regions in
the right-looking SAR data due to steep topography
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Differencing of 2005 and 2016 LiDAR DEMs indicates an aver-
age cumulative landslide volume of 1.03 × 105 m3 per year (see
Section “Landslide volume estimations”), which is approximated
by the simulated cases of V = 1.1 × 105 m3. Even the highly mobile
simulations with this initial volume pose limited threats to the
campground (Fig. 9). Consequently, collapses of the headscarp
with volumes less than 105 m3 are unlikely to be of much concern.
The simulations agree well with the field observations from US
Forest Service that the campground has never experienced any
debris flow events since at least 2005.

However, once landslide volumes exceed 106 m3, the simu-
lated debris flows run over the entire campground under both
mobility assumptions. As expected, larger volumes tend to
increase the runout extent as well as the thickness of deposits
on the campground. The estimated maximum landslide vol-
ume of 2.0 × 106 m3 (see Section “Landslide volume estima-
tions”) is most closely represented by our simulations with V
= 2.1 × 106 m3. As shown in Figs. 8 and 9, our simulations
with initial volumes of V = 2.1 × 106 m3 produce debris flows
which invariably inundate the entire campground, regardless
of their simulated mobility (see supplementary materials for
runout animations). The highly mobile debris flow with this
initial volume crosses the campground with an 8-m-high flow

front. The simulations also suggest that camp sites near the
mouth of the middle valley are the most vulnerable to poten-
tial runout events.

Discussion
Remotely sensed data such as LiDAR DEMs and SAR provide a
means for monitoring landslide motion, at a large scale, in an
efficient and cost-effective manner. However, these methods may
also present technical and practical challenges for particular diffi-
cult cases. For instance, available LiDAR DEMs are typically tem-
porally sparse, while the side-looking angle and spatial resolution
of SAR data limit their effectiveness for small landslides in steep or
heavily vegetated areas.

Different SAR datasets have varied advantages and disad-
vantages in terms of landslide mapping. For instance, the L-
band ALOS and ALOS-2 SAR sensors have great vegetation
penetration but temporally sparse acquisitions. The Sentinel-
1A/B datasets provide temporally dense sampling yet coarse
resolution in azimuth direction (Xu et al. 2019). The
TerraSAR-X images have high spatial resolution but poor
vegetation-penetrating capability. While using phase informa-
tion through InSAR provides the best displacement measure-
ment accuracy, it has limited applicability to cases with severe

Fig. 7 Intensity changes and tracked displacements of TerraSAR-X images spanning 2017–2018 (left column), 2018–2019 (middle column), and 2017–2019 (right
column)
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Fig. 8 Maximum campground damages from D-claw simulations with m0 −mcrit= 0.02. V denotes volumes ranging from 5.7 × 104 to 4.5 × 106 m3, and t is the time
denoted in hours:minutes:seconds. The highly smooth area near the headscarp of the middle lobe represents the simulated slip surfaces. See supplementary materials for a
runout animation of the case V = 2.1×106 m3

Fig. 9 Maximum campground damages from D-claw simulations with m0 −mcrit= − 0.02. V denotes volumes ranging from 5.7 × 104 to 4.5 × 106 m3, and t is the time
denoted in hours:minutes:seconds. See supplementary materials for a runout animation of the case V = 2.1×106 m3
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coherence loss. Such decorrelation might be induced by large
displacement, long spatial/temporal baselines, or ground fea-
ture changes. In contrast, offset tracking of SAR intensity
images is more tolerant to large deformation and temporal/
spatial baselines despite of the lower accuracy of 1/20–1/10
pixels (Hanssen 2001). Overall, by combining multiple sources
of SAR datasets and employing optimal data processing strat-
egies, we have found that it is possible to maximally harness
their combined attributes for landslide monitoring.

LiDAR DEMs are able to provide reliable measurements of
landslide activity with small spatial extent, such as headscarp
collapses of the Gold Basin landslide complex. However, the high
cost of repeated LiDAR acquisitions and the low sensitivity to
slow-moving slides comprise substantive disadvantages. Neverthe-
less, we have shown that the challenges with individual remote
sensing technologies can largely be overcome through the simul-
taneous use of multiple data sources and comprehensive data
corroboration.

Modeling of landslide dynamics and inundation given an initial
mass failure still presents challenges as well, largely resulting from
uncertainties about site-specific subsurface conditions and mate-
rial properties. However, by considering a range of possibilities,
inundation bounds can be approximated to a reasonable degree of
certainty, at least for general hazard awareness and effective mit-
igation strategies.

Conclusions
Applying complementary remote sensing data including Li-
DAR DEMs and SAR images to surveil stability of the Gold
Basin landsl ide demonstrates that only substantia l
but localized displacements have occurred at the Gold Basin
area between 2005 and 2019. The middle lobe has been the
most active, while the eastern-most lobe has been primarily
stable during this period. The headscarp of the middle lobe
underwent a maximum displacement of approximately 40 m
during the past decade, and the western-most lobe has also
experienced displacements of about 20 m at the headscarp.
Significant erosion was observed at the riverbank near the
m i d d l e v a l l e y a f t e r 2 0 1 7 . Av e r a g e c umu l a t i v e
movement volume of the Gold Basin landslide complex is
1.03 × 105 m3 per year. Nevertheless, from 2005 to 2019, there
is no evidence indicating movement of a large central block
or single deep-seated landslide body.

Our practice of interpreting SAR with multiple approaches
demonstrates that offset tracking of high-resolution SAR is an
effective alternate approach to detect landslide activity if InSAR
cannot yield reasonable results due to coherence loss induced by
vegetation or steep slope angles.

D-claw runout simulations with multiple landslide volumes
and varied runout behaviors show that small collapses of the
headscarp with volumes less than 105 m3 will most likely pose
a low threat to the campground, while severely hazardous
runout might occur if the initial slide is over 106 m3. The
estimated maximum volume of the Gold Basin landslide is 2.0
× 106 m3, indicating a significant hazard to the nearby camp-
ground should slope failure induce a mobile landslide. The
runout potential of such a landslide would depend on the
landslide mobility, which is dependent on material parameters
that are difficult to constrain due to uncertainties about the

subsurface conditions. Nevertheless, flow simulations provide
evidence about the range of possible outcomes and inform
hazard mitigation.

In this investigation, we have proven the possibility of
using remotely sensed data to measure deformation occurring
in a difficult terrain by integrating multiple data sources and
comprehensive data processing strategies. Furthermore, we
have presented a means of evaluating runout hazards of a
landslide by employing the numerical model D-claw. Most
importantly, the methods developed for this case study can
be easily adapted for other similar landslides globally to assist
on landslide hazards prevention and mitigation.
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