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Abstract: The Interferometric Synthetic Aperture Radar (InSAR) technique is a well-developed remote
sensing tool which has been widely used in the investigation of landslides. Average deformation
rates are calculated by weighted averaging (stacking) of the interferograms to detect small-scale
loess landslides. Heifangtai loess terrace, Gansu province China, is taken as a test area. Aiming to
generate multi-temporal landslide inventory maps and to analyze the landslide evolution features
from December 2006 to November 2017, a large number of Synthetic Aperture Radar (SAR) datasets
acquired by L-band ascending ALOS/PALSAR, L-band ascending and descending ALOS/PALSAR-2,
X-band ascending and descending TerraSAR-X and C-band descending Sentinel-1A/B images
covering different evolution stages of Heifangtai terrace are fully exploited. Firstly, the surface
deformation of Heifangtai terrace is calculated for independent SAR data using the InSAR technique.
Subsequently, InSAR-derived deformation maps, SAR intensity images and a DEM gradient map
are jointly used to detect potential loess landslides by setting the appropriate thresholds. More than
40 active loess landslides are identified and mapped. The accuracy of the landslide identification
results is verified by comparison with published literatures, the results of geological field surveys and
remote sensing images. Furthermore, the spatiotemporal evolution characteristics of the landslides
during the last 11 years are revealed for the first time. Finally, strengths and limitations of different
wavelength SAR data, and the effects of track direction, geometric distortions of SAR images and the
differences in local incidence angle between two adjacent satellite tracks in terms of small-scale loess
landslides identification, are analyzed and summarized, and some suggestions are given to guide the
future identification of small-scale loess landslides with the InSAR technique.
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1. Introduction

Loess occupies an area of about 630,000 km2, equivalent to approximately 6.6% of the total area
of China [1]. This includes the loess plateau, an important base of energy sources and chemical
industries, which amounts to approximately 0.4 million km2 in area [2]. Since loess has distinctive
physical and mechanical properties—including loose texture, vertical joints, macro-pores, high water
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sensitivity, and collapsibility—it is prone to geological hazards triggered by earthquakes, rainfall and
irrigation [3–5]. One third of the geological hazards in China occur in loess plateau, e.g., landslides,
collapse, ground fissures and erosion and collapsible settlement [1,6]. Over the past few decades,
these geological hazards have caused enormous numbers of casualties and economic losses, such as
the destruction of civil houses and factories, the destruction of major transport trunk lines, damage
to oil and gas routes and the reduction of cultivated lands [7,8]. Loess landslides, one of the severe
geological hazards in loess plateau, have the special characteristics of high speed, a small spatial scale,
long runout distance, group occurrence, and recurrence [2,9].

Landslide inventory maps record the location and (where known) the types of mass movements
and the date of occurrence that have left discernable traces in an area. It is of great significance to
investigate the distribution, type, recurrence rate and statistics of landslides, and to determine their
susceptibility, deadliness, vulnerability and risk [10]. Traditional methods for landslide inventory
mapping mainly depend on field geological surveys, visual interpretation of stereoscopic aerial images
and unmanned aerial vehicle (UAV) photogrammetry. For instance, Peng et al. [11] obtained the
distribution and type of the landslides in the Heitai area of China using UAV photogrammetry and
field investigations. Furthermore, Zhuang et al. [5] mapped the locations of landslides at the scale of
1:50,000 in the Shaanxi province of China via field investigations and aerial photographs. Due to the
labor-intensiveness and low efficiency of field investigation method, and low accuracy of UAV DEM
measurement, the inventory mapping of large area, small-scale loess landslides is still challenging.
Interferometric Synthetic Aperture Radar (InSAR) can overcome the aforementioned limitations as it
can remotely sense landslides over as large as over tens to ten thousands of square kilometers area
with good measurement accuracy (e.g., [12–14]).

Over the past decades, a series of advanced multi-temporal InSAR (MT-InSAR) algorithms,
including Persistent Scatterers Interferometry (PSI) [15–22] and the Small Baseline Subset (SBAS) [23–26],
have been developed to overcome the major limitations of the traditional InSAR method and hence
improve the applicability of the InSAR technique. These advanced MT-InSAR techniques have been
widely used in the identification of landslides [27–43]. However, due to the special characteristics of
loess landslides, which include small spatial scale and abrupt occurrence and recurrence [44], especially
for multi-temporal landslide inventory mapping, these advanced MT-InSAR techniques still have
some difficulties, including the decorrelation caused by surface vegetation and soil moisture changes,
unwrapping errors and DEM errors caused by abrupt landslides, and (often) atmospheric artifacts
(including stratified atmosphere delay and turbulence).

Owing to the increasing availability of Synthetic Aperture Radar (SAR) datasets, both archived
and operational, the combination of multi-source, multi-resolution and multi-temporal SAR data for
landslide identification should constitute the present strategy. Herrera et al. [45] used multi-sensor
and multi-temporal SAR data to detect and monitor slow-moving landslides in the Upper Tena
Valley of the Central Spanish Pyrenees. Mulas et al. [46] integrated multi-sensor SAR data to
characterize the slow-moving landslide in Badia village, up-stream of Corvara in the Dolomites region
of Italy. Sun et al. [47] integrated multi-sensor SAR data to detect and characterize the slow-moving
landslides in Zhouqu, China. Multi-sensor InSAR datasets including L-band ALOS/PALSAR and
ALOS/PALSAR-2 data, X-band TerraSAR-X data and C-band Sentinel-1A/B data with various
spatial-resolutions, revisiting periods and wavelengths, make it possible to detect small-scale loess
landslides and generate multi-temporal inventory maps.

2. The Study Area

2.1. Geological Setting

The Heifangtai loess terrace is located in Yongjing county, Gansu province, northwestern China
(Figure 1a), and consists of Heitai and Fangtai separated by Hulang gully, occupying a surface area
of about 13.7 km2 [9,11,48,49]. The Yellow River and the Huangshui River surround this terrace.
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The elevation difference from the bottom to the top of the terrace is about 199.1 m, and the slope
gradient at the edge of the terrace varies from 20 to 70◦ (Figure 1b). Based on borehole drilling and
geophysical exploration data, the terrace has been determined to be mainly composed of Aeolian
loess [50]. Figure 2 shows the engineering geological profile of the terrace along the line A–A’ in
Figure 1a in the azimuth of 60◦ direction, which can be divided into four layers from up to the bottom
of Malan loess (Qeol

3 ), alluvial clay (Qal
3 ), fluvial gravel (Qal

3 ) and bedrock (K1hk) [11,50]. The top layer
is Malan loess with a thickness of 30–50 m, which is mainly composed of silt-sized loess with high
porosity and open-paced fabric, resulting in a high susceptibility to collapse upon wetting [11].

 

Figure 1. (a) Research region and the distribution of landslides (revised after [11,51]). The overall
distribution of landslides can be divided into nine landslide groups, i.e., G1 (Fangtai landslide group),
G2 (Xinyuan landslide group), G3 (Dangchuan landslide group), G4 (Huangci landslide group),
G5 (Yehugou landslide group), G6 (Jiaojiaya landslide group), G7 (Jiaojia landslide group), G8 (Chenjia
landslide group) and G9 (Moshigou landslide group). The inset indicates the location of the study
area in China. (b) Slope map of the study area generated from a three-meter spatial resolution
digital elevation model (DEM) (hereinafter UAV DEM) generated by unmanned aerial vehicle (UAV)
photogrammetry with an optical camera with the type of Sony ILCE-7R_FE35mmF2.8ZA_35.0_7360x
4912 (RGB).
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Figure 2. Engineering geological profile of the Heifangtai loess terrace along the line A–A’ [50].

The average annual evaporation and precipitation in the study area are about 1593 mm and
287.6 mm, respectively [1]. According to Xu et al. [48], the annual irrigation volume was about
0.7 million cubic meters in the 1980s, and increased to 0.88 million cubic meters in 2009. As a result,
the groundwater level has risen by approximately 20 m at an average rate of 0.18 m per year since
the 1980s [11]. The basal zone of loess is softened by saturation and prone to deformation under
overburden stress [49], which has led to about 200 loess landslides and a number of dense cracks
distributed at the edge of the terrace [11]. Additionally, the terrace cliff retreated by about 126 m due to
the frequent occurrence of landslides between 1977 and 2010, and is still retreating at an estimated rate
of 0.024 km2 per year [1,49]. As such, these loess landslides seriously restrict the development of the
regional economy and threaten the safety of the local residents, factors which have been extensively
investigated by numerous researchers in China and abroad [52–56].

2.2. Landslides

The distribution of landslides in the whole Heifangtai terrace are investigated based on digital
elevation model (DEM), aerial images and the results of field work [11,51], as shown in Figure 1a.
A total of 69 landslides are detected in the Heitai area. These landslides are classified into two
groups [11]: Loess-bedrock landslide (failure surface generates in the loess layer and then extends
downwards to the bedrock layer) and loess landslide (failure surface is entirely developed in the
whole loess layer). The landslides can be further divided into nine landslide groups in the spatial
domain [11]: G1 (Fangtai landslide group), G2 (Xinyuan landslide group), G3 (Dangchuan landslide
group), G4 (Huangci landslide group), G5 (Yehugou landslide group), G6 (Jiaojiaya landslide group),
G7 (Jiaojia landslide group), G8 (Chenjia landslide group) and G9 (Moshigou landslide group). Loess
landslides are developed on the Fangtai landslide group, Dangchuan landslide group, Yehugou
landslide group, Jiaojiaya landslide group, Jiaojia landslide group, Chenjia landslide group and
Moshigou landslide group, while loess-bedrock landslides are distributed on the Fangtai landslide
group, Xinyuan landslide group, Huangci landslide group and Jiaojia landslide group. Detailed
information on landslide distribution, name, length, width and volume is provided in Ref. [11].
Over the past three decades, more than 120 failures have occurred in the study area [1]. Recently,
a large landslide occurred on the Dangchuan landslide group on 29 April 2015, which released about
35 × 104 m3 of debris with a maximum sliding distance of 182 m, and destroyed three factories and
fourteen houses. Three large landslides subsequently occurred on the Dangchuan landslide group on
1 October 2017 with a total volume of about 33.9 × 104 m3 [11,57].

3. Datasets and Methodology

3.1. Datasets

In order to determine the distribution of landslides in the Heifangtai loess terrace and reveal the
temporal evolution of landslides over the last 11 years, a total of 111 SAR images from four different
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satellites and seven different tracks were used in the study (Figure 3). The main parameters of the SAR
images used in the study are shown in Table 1. The periods of each dataset are presented in Figure 4.
Note that the periods of ascending and descending TerraSAR-X data are less than one year, while
those of ALOS/PALSAR and ALOS/PALSAR-2 images are around four and three years, respectively.
Unfortunately, no achieved abovementioned SAR images are available during the years of 2011 to 2014.

 
Figure 3. SAR datasets coverage used in the study. The red rectangle indicates the location of the
study area, and other different color rectangles indicate different SAR data coverages. The shaded
topography is the AW3D30 DSM generated by advanced land observing satellites (ALOS).

Figure 4. The periods of each SAR dataset used in the present study.
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Table 1. Main parameters of the SAR datasets used for Heifangtai landslide inventory mapping.

Satellite Band Track Geometry
Incidence
Angle (◦)

Resolution in
Azimuth (m) and Range (m)

Number of
SAR Images

ALOS/PALSAR L 473 Ascending 38.7385 3.16 × 4.7 22
ALOS/PALSAR L 474 Ascending 38.7263 3.14 × 4.7 12

ALOS/PALSAR-2 L 146 Ascending 40.5539 3.25 × 4.29 6
ALOS/PALSAR-2 L 39 Descending 40.5551 3.25 × 4.29 5

TerraSAR-X X 21 Ascending 41.1669 1.26 × 0.91 23
TerraSAR-X X 165 Descending 41.8010 1.26 × 0.91 19

Sentinel-1A/B C 135 Descending 33.7927 9.32 × 13.97 24

In order to obtain high-accuracy InSAR measurement results, for ALOS/PALSAR-2, TerraSAR-X
and Sentinel-1A/B datasets, a three-meter spatial resolution digital elevation model (DEM) (hereinafter
UAV DEM) generated by unmanned aerial vehicle (UAV) photogrammetry with an optical camera
with the type of Sony ILCE-7R_FE35mmF2.8ZA_35.0_7360x4912 (RGB) is used to differentiate the
topographic phase and to perform the result analysis. For ALOS/PALSAR datasets, one arc-second
advanced land observing satellites (ALOS) global digital surface model (AW3D30 DSM) data is adopted
for topographic phase removal and result analysis. A multilooking factor of two in azimuth is used
in the processing of ALOS/PALSAR and ALOS/PALSAR-2 data, while the multilooking factors of
2 × 2 and 4 × 1 are used in the processing of TerraSAR-X data and Sentinel-1A/B data, respectively.
The spatial resolution of multi-looked ALOS/PALSAR images is about 7.5 m in both range and azimuth
directions, that of TerraSAR-X images is about 3 m in both directions, that of ALOS/PALSAR-2 images
is about 6.5 m in both directions, and that of Sentinel-1A/B images is about 16 m in both directions.
SAR images with these spatial resolutions have the best ability to detect small-scale loess landslides
and to monitor landslide deformation with large gradients.

The SBAS method [23] is adopted independently for different SAR data to generate all possible
interferograms firstly by setting the appropriate temporal and spatial baseline thresholds. Then,
the coherence of interferograms are checked, especially in landslide-prone regions. The interferograms
with heavy decorrelation noises caused by agricultural irrigation, heavy rainfall in summer and dense
vegetation are removed. Finally, the following interferograms are selected: A total of 38 interferograms
for ALOS/PALSAR images from track 473, 19 interferograms for ALOS/PALSAR images from
track 474, 30 interferograms for ascending TerraSAR-X images, 25 interferograms for descending
TerraSAR-X images, 8 interferograms for ascending ALOS/PALSAR-2 images, 7 interferograms for
descending ALOS/PALSAR-2 images and 44 interferograms for descending Sentinel-1A/B images.
Spatial–temporal baselines and high-quality InSAR combinations are shown in Figure 5. Figure 5a
shows the configuration of the temporal and spatial baseline of the interferometric pairs produced by
ascending ALOS/PALSAR datasets from tracks 473 (black line) and 474 (red line). Figure 5b shows the
configuration of the temporal and spatial baseline of the interferometric pairs produced by ascending
and descending ALOS/PALSAR-2 datasets from tracks 146 (black line) and 39 (red line). Figure 5c
shows the configuration of the temporal and spatial baseline of the interferometric pairs produced by
ascending and descending TerraSAR-X datasets from tracks 21 (black line) and 165 (red line). Figure 5d
shows the configuration of the temporal and spatial baseline of the interferometric pairs produced by
descending Sentinel-1A/B datasets from track 135. The X-band SAR data has weaker penetrability
than the C- and L-band data, especially in vegetation-covered regions [58], and accordingly the
interferograms generated from both ascending and descending TerraSAR-X datasets are divided into
two independent subsets. The detailed data processing parameters used in the study are listed in
Table 2.
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Figure 5. InSAR combinations of the high-quality interferometric pairs and their spatial–temporal
baselines for high-quality datasets. (a) Ascending ALOS/PALSAR datasets from tracks 473 (black line)
and 474 (red line); (b) Ascending and descending ALOS/PALSAR-2 datasets from tracks 146 (black
line) and 39 (red line); (c) Ascending and descending TerraSAR-X datasets from tracks 21 (black line)
and 165 (red line); (d) Descending Sentinel-1A/B datasets from track 135.

Table 2. The detailed data processing parameters used in the study.

Datasets Track
Multilooking

Factor
Temporal

Threshold (day)
Baseline

Threshold (m)
Interferograms

Used

ALOS/PALSAR 473 1 × 2 500 2000 38
ALOS/PALSAR 474 1 × 2 500 2000 19

ALOS/PALSAR-2 146 1 × 2 600 500 8
ALOS/PALSAR-2 39 1 × 2 600 500 7

TerraSAR-X 21 2 × 2 60 250 30
TerraSAR-X 165 2 × 2 60 250 25

Sentinel-1A/B 135 4 × 1 48 200 44

3.2. Flowchart of Landslide Identification with the InSAR Method

InSAR images and derived products have proven useful for mapping and characterizing landscape
changes and ground deformation [58]. In this study, a topographic slope map, InSAR deformation
maps and SAR intensity images are jointly employed to detect active small-scale loess landslides.

The detailed flowchart of small-scale loess landslide detection based on multi-source and
multi-temporal SAR datasets is depicted in Figure 6. For one specific SAR dataset, a suitable
master image is first selected considering both the temporal and spatial baseline and the variation
of the Doppler central frequency [59], and all slave images are subsequently co-registered to it.
Secondly, all possible interferograms are generated by setting appropriate temporal and spatial
baseline thresholds, the topographic phase is removed with respect to external DEM, interferograms
are filtered [60] and unwrapped with the minimum cost flow (MCF) method [61], the component of
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stratified atmosphere is removed by estimating a phase delay elevation profile for each interferogram
and the residual orbital ramp is removed using refined baselines. Lastly, the average deformation rate
for each pixel is calculated by weighted averaging (stacking) of the high-quality interferograms [62].
It should be noted that three key steps—the selection of high-quality interferograms, DEM error
correction and phase unwrapping error detection and correction—must be carefully considered in
order to detect small-scale loess landslide.

Figure 6. Detailed flowchart of small-scale loess landslide detection with the InSAR technique by
combination of multi-source and multi-temporal SAR datasets.

The derived average deformation rate map is used to detect active landslides. It is initially
regarded as an active landslide if the annual average deformation rate is greater than 2 cm or less
than −1 cm in the line-of-sight direction. In order to exclude the influence of layover for landslide
identification, DEM gradient map and SAR intensity images are used to further validate the identified
active landslides [27]. The value of the DEM gradient threshold is set as 10◦ based on in situ geological
investigation. It is identified to be an active landslide if the DEM gradient value is greater than 10◦.
The coordinates and shapes of active landslides are ascertained. The same procedure is conducted
for SAR data from other satellite tracks. The independent InSAR results from different satellite
tracks are cross-validated with respect to their geometries. Eventually, the identified landslides from
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different SAR datasets are combined into a mosaic to generate the final multi-temporal landslide
inventory maps.

3.3. DEM Error Correction

A newly generated, high-resolution UAV DEM is used to eliminate the topographic phase for
landslide identification. However, due to the surface change caused by repeated landslides, no DEM is
available during the SAR acquisition periods. DEM errors often exist in differential interferograms,
and will inevitably result in errors in the final deformation results. According to the height-to-phase
formula [63], the topographic phase is proportional to the perpendicular baseline B⊥ between two
SAR images, and the DEM error ΔZ can be estimated with following equation:

δφ = [A, B]

[
V

ΔZ

]
+ δφn (1)

where δφ is the unwrapped phase, A and B are coefficient matrices (for the detailed form of A and
B, see [27]), V is the deformation rate and δφn is the residual phase including nonlinear deformation
phase, turbulent atmospheric noise and phase noise. As the phase of DEM error is sensitive to the
long perpendicular baseline, interferograms with small temporal baselines and long spatial baselines
are selected to calculate DEM error under the norm of least squares [2]. Moreover, high quality
interferograms without unwrapping errors and atmospheric perturbations are needed. DEM errors
are then added back to the original DEM to update the DEM as follows:

Ztopo = ZDEM + ΔZ (2)

where ZDEM is the height of the DEM and Ztopo is the updated DEM. The value of interferogram
coherence is used to determine whether the DEM error is reasonably corrected. The abovementioned
procedure can be operated iteratively.

3.4. Phase Unwrapping Error Detection and Correction

The principal observations of InSAR are wrapped interferometric phases (modulo 2π) and the 2π
ambiguity is removed in practice by phase unwrapping step to generate a continuous map of phase
values. However, in the case of loess landslide identification, phase unwrapping errors often occur
due to the large fringe numbers presented on the interferograms caused by large deformation gradient
and coherence loss.

Some methods have been developed to evaluate phase unwrapping quality and correct phase
unwrapping error. For instance, López-Quiroz et al. [64] used the root mean square (RMS) of
interferometric system disclosure to detect the phase unwrapping error, while Yang et al. [65] used
the region-grow method to detect and correct phase unwrapping error. In this study, unwrapping
errors are firstly detected and located by the vision and closed loop methods [66]. Two different
methods are then applied to correct the detected unwrapping errors: (1) When conducting the phase
unwrapping, the correct unwrapping phase can be obtained by testing different coherence thresholds;
(2) As the phase contributions (deformation, atmospheric and orbital) behave in a conservative
manner, e.g., φAB + φBC = φAC, where φAB is the phase contribution of interferogram AB generated by
acquisitions A and B, once there exits disclosure, unwrapping errors occur. The 2π integer times phase
offset is then added back to the wrongly unwrapped phase to achieve the correct unwrapped phase.
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4. Results

4.1. Error Detection and Correction

4.1.1. DEM Error Correction

The UAV DEM was acquired over the study region in 2015. Some landslides occurred in
the following years, which caused topography change. Hence, DEM errors occur in differential
interferograms generated from ALOS/PALSAR-2, TerraSAR-X and Sentinel-1A/B datasets. As an
example, two typical interferograms with short perpendicular baseline and long perpendicular baseline
are shown in Figure 7a,c. Figure 7a shows the original interferogram with a temporal baseline of
22 days and a perpendicular baseline of −23.217 m. Figure 7c shows the original interferogram with
a temporal baseline of 11 days and a perpendicular baseline of 133.176 m. It is clear that the region
indicated by the white dotted rectangle in Figure 7c is affected by DEM errors. It is worth noting
that the region indicated by the white dotted rectangle in Figure 7a is dominated by unwrapping
errors rather than DEM errors, which will be discussed in the next section. DEM errors are estimated
with high-quality interferograms and removed from all interferograms. The results of the DEM error
correction are given in Figure 7d. It can be seen that the DEM error is well corrected while the
deformation signal is well retained.

Figure 7. The unwrapped interferograms before and after DEM error correction. (a) Original
unwrapped interferogram with DEM error acquired between 8 March 2016 and 30 March 2016;
(b) The same interferogram after DEM error correction; (c) Original unwrapped interferogram with
DEM error acquired between 30 March 2016 and 10 April 2016; (d) The same interferogram after DEM
error correction.
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4.1.2. Phase Unwrapping Error Correction

Serious unwrapping errors occur in this region for two main reasons. The first is the losses
of coherence caused by dense vegetation coverage, rainfall and agricultural irrigation. The second
is the dense fringes presented in the interferograms caused by DEM errors and large deformation
gradient. After the correction of the DEM errors, the interferometric fringes caused by DEM errors
were successfully removed and the number of fringes was significantly reduced, which makes the
phase unwrapping much easier. The remaining unwrapping errors caused by low coherence and large
deformation gradient were then corrected by two different methods mentioned above. The unwrapped
interferograms before and after phase unwrapping error correction are shown in Figure 8. In Figure 8a,c,
it is evident that the deformation signals of the region indicated by the white dotted rectangle are
obscured by unwrapping errors. The unwrapping errors in Figure 8a are corrected by the method of
adding 2π integer times phase offset. However, for the unwrapping errors in Figure 8c, after several
tests, an optimal coherence threshold is set to obtain the corrected unwrapping phase. The corrected
results are given in Figure 8b,d, where it can be seen that the phase unwrapping errors are well
corrected and the deformation signals are retained.

Figure 8. The unwrapped interferograms before and after phase unwrapping error correction.
(a) Original unwrapped interferogram acquired between 8 March 2016 and 30 March 2016; (b) The same
interferogram after phase unwrapping error correction; (c) Original unwrapped interferogram
acquired between 4 June 2016 and 15 June 2016; (d) The same interferogram after phase unwrapping
error correction.

4.2. Identification of Potential Landslides

Average line-of-sight deformation rate maps for the Heifangtai loess terrace from December 2006
to November 2017 are obtained with different SAR datasets. Note that negative values (red color)
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represent movement away from the satellite and positive values (blue color) indicate movement
towards the satellite. The blue polygons indicate the distribution of landslide groups. Figure 9 shows
the results calculated with different ascending datasets with different time spans. Figure 9a shows the
deformation rate map calculated with ALOS/PALSAR data from track 473 from December 2006 to
March 2011. It can be seen that the whole landslide groups including Fangtai, Yehugou and Moshigou
all suffered deformation. Additionally, some large deformation occurred in the local area of other
landslide groups, such as Dangchuan, Huangci, Jiaojia and Chenjia. Figure 9b shows the deformation
rate map calculated with ALOS/PALSAR data from track 474 from March 2007 to October 2009. It can
be seen that the active deformation areas are basically consistent with those obtained from track
473 datasets. A large deformed funnel was observed in the Huangci landslide group (i.e., Huangci
No.3 landslide), the main reason for which is a landslide which occurred in May 2008. Figure 9c
shows the deformation rate map calculated with TerraSAR-X data from track 21 from February 2016 to
November 2016. It can be seen that some new deformed regions appeared in the study area compared
with Figure 9a,b, such as in the Xinyuan, Dangchuan, Jiaojia and Chenjia landslide groups. The whole
Dangchuan landslide group was deformed and two new deformation regions appeared in the Xinyuan
landslide group. Additionally, it can be seen that the deformed funnel in the Huangci landslide group
is not presented in Figure 9c, which suggests that there was no new deformation in this area after
the occurrence of the Huangci No. 3 landslide. Figure 9d is the deformation rate map calculated
with ALOS/PALSAR-2 data from track 146 from November 2014 to November 2017. It can be seen
that the obtained active deformation regions are basically consistent with the results obtained from
TerraSAR-X data in most regions of the study area (i.e., the Fangtai and Moshigou landslide group).
Due to the low spatial resolution of ALOS/PALSAR-2 data (compared with TerraSAR-X data) and
the influence of temporal decorrelation for one-year interferogram, it is evident that some potential
landslides were missed in the Xinyuan, Dangchuan and Chenjia landslide groups. Figure 10 shows
the results calculated with different descending datasets with different time spans. Figure 10a is the
average deformation rate map calculated with TerraSAR-X data from track 165 from January 2016
to November 2016. Similarly, it can be seen that there are large deformations in the whole of the
Dangchuan and Moshigou landslide groups. Other large deformations occurred in the local area of
the Xinyuan, Yehugou, Jiaojia and Chenjia landside groups. Furthermore, it can be seen that some
omissions for landslides appeared in the Fangtai and Chenjia landslide groups due to geometric
distortions of SAR images and temporal decorrelation. Figure 10b shows the average deformation
rate map calculated with ALOS/PALSAR-2 data from track 39 from May 2015 to July 2017. It can be
seen that the results are in good agreement with those obtained from descending TerraSAR-X data.
Some differences were observed in the Xinyuan, Yehugou and Jiaojia landslide groups, which may
have been caused by the low spatial resolution of ALOS/PALSAR-2 images and the different temporal
spans of the two datasets. Figure 10c is the deformation rate map calculated with Sentinel-1A/B data
from track 135 from September 2016 to October 2017. It can be seen that the whole of the Dangchuan
and Moshigou landslide groups, and the local areas of the Yehugou and Chenjia landslide groups,
deformed continuously. The absence of deformation in some regions (i.e., the Xinyuan and Jiaojia
landslide groups) may be due to the low spatial resolution of Sentinel-1A/B data resulting in the
omission of some small-scale landslides.

Table 3 shows the changes of area in different landslide groups in the Heifangtai terrace identified
by different SAR datasets during different periods. The following conclusions can be drawn:

(i) It can be seen from Figures 9 and 10 that the deformation regions calculated with different SAR
datasets during a similar period are in good overall agreement, meaning that slow-rate surface
deformation can be measured by different SAR data once it can be mapped in the line-of-sight
direction. Furthermore, the existence of differences among different SAR datasets are mainly
caused by different SAR acquisition parameters, including SAR acquisition date, wavelength,
spatial resolution, local incidence angle and satellite tracking direction, which can be used to
obtain more detailed information on each individual landslide.
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(ii) The deformation region of the Heifangtai terrace before 2011 was significantly different than that
after 2014. From December 2006 to March 2011, the deformation regions of the Heifangtai terrace
were mainly concentrated in the Fangtai, Yehugou and Moshigou landslide groups. However,
after 2014, the main deformation region extended to Dangchuan landslide group, where large
deformation occurred. Furthermore, some new deformation regions developed in the Xinyuan,
Jiaojia and Chenjia landslide groups, which suggests an increasing trend of landslide distribution
from December 2006 to November 2017.

(iii) Loess landslides and loess-bedrock landslides have different formation processes. In loess
landslides, the deformation of the landslide does not terminate even if it has already slid,
but the deformation continues to occur on the back edge of the landslide to form a new
landslide (as seen in the Dangchuan landslide group, where three large landslides occurred
in 2015, and some deformation can still be monitored subsequently), which is closely related
to the retrogressive failure mode of loess landslides [49]. However, in loess-bedrock landslides,
no obvious deformation can be monitored in a short period of time once a landslide has
already occurred.

(iv) It can be seen from Table 3 that the area of active landslides identified by ALOS/PALSAR datasets
from track 473 and track 474 are highly different in the Huangci, Jiaojia and Chenjia landslide
groups. The area of active landslides identified on track 474 images is larger than that identified
on track 473 images. This difference may be due to the different acquisition times of the two
datasets. According to Peng et al. [11] the largest number of landslides occurred in 2007 and 2008,
and the acquisition time of track 474 images is mainly concentrated in this period.

Figure 9. Average line-of-sight deformation rate maps for the Heifangtai loess terrace calculated
with ascending SAR datasets. The blue polygons indicate the distribution of landslide groups.
(a) ALOS/PALSAR data with track 473 acquired from December 2006 to March 2011; (b) ALOS/PALSAR
datasets with track 474 acquired from March 2007 to October 2009; (c) TerraSAR-X datasets with track 21
acquired from February 2016 to November 2016; (d) ALOS/PALSAR-2 datasets with track 146 acquired
from November 2014 to November 2017.
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Figure 10. Average line-of-sight deformation rate maps for the Heifangtai loess terrace calculated
with descending SAR datasets. (a) TerraSAR-X datasets with track 165 acquired from January 2016
to November 2016; (b) ALOS/PALSAR-2 datasets with track 39 acquired from May 2015 to July 2017;
(c) Sentinel-1A/B datasets with track 135 acquired from September 2016 to October 2017.

Table 3. The changes of area in different landslide groups identified by different SAR datasets during
different periods in the Heifangtai terrace.

Landslide Group Detected SAR Data Track Period Area (km2)

Fangtai

ALOS/PALSAR 473 December 2006–March 2011 0.0795
ALOS/PALSAR 474 March 2007–October 2009 0.0708

ALOS/PALSAR-2 146 November 2014–November 2017 0.0678
ALOS/PALSAR-2 39 May 2015–July 2017 0.0042

TerraSAR-X 21 February 2016–November 2016 0.0582
TerraSAR-X 165 January 2016–November 2016 0.0076

Xinyuan

ALOS/PALSAR 473 December 2006–March 2011 0.0059
ALOS/PALSAR 474 March 2007–October 2009 0.0069

ALOS/PALSAR-2 146 November 2014–November 2017 0.0064
ALOS/PALSAR-2 39 May 2015–July 2017 0.0108

TerraSAR-X 21 February 2016–November 2016 0.0075
TerraSAR-X 165 January 2016–November 2016 0.0165

Dangchuan

ALOS/PALSAR 473 December 2006–March 2011 0.1024
ALOS/PALSAR 474 March 2007–October 2009 0.0951

ALOS/PALSAR-2 146 November 2014–November 2017 0.1016
ALOS/PALSAR-2 39 May 2015–July 2017 0.1672

TerraSAR-X 21 February 2016–November 2016 0.0933
TerraSAR-X 165 January 2016–November 2016 0.1391

Sentinel-1A/B 135 September 2016–October 2017 0.1610
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Table 3. Cont.

Landslide Group Detected SAR Data Track Period Area (km2)

Huangci ALOS/PALSAR 473 December 2006–March 2011 0.1168
ALOS/PALSAR 474 March 2007–October 2009 0.1862

Yehugou

ALOS/PALSAR 473 December 2006–March 2011 0.0703
ALOS/PALSAR 474 March 2007–October 2009 0.0634

ALOS/PALSAR-2 146 November 2014–November 2017 0.0313
ALOS/PALSAR-2 39 May 2015–July 2017 0.0184

TerraSAR-X 21 February 2016–November 2016 0.0311
TerraSAR-X 165 January 2016–November 2016 0.0323

Sentinel-1A/B 135 September 2016–October 2017 0.0420

Jiaojiaya
ALOS/PALSAR 473 December 2006–March 2011 0.0018
ALOS/PALSAR 474 March 2007–October 2009 0.0007

TerraSAR-X 21 February 2016–November 2016 0.0023

Jiaojia

ALOS/PALSAR 473 December 2006–March 2011 0.0425
ALOS/PALSAR 474 March 2007–October 2009 0.0544

ALOS/PALSAR-2 146 November 2014–November 2017 0.0202
ALOS/PALSAR-2 39 May 2015–July 2017 0.0043

TerraSAR-X 21 February 2016–November 2016 0.0309
TerraSAR-X 165 January 2016–November 2016 0.0413

Sentinel-1A/B 135 September 2016–October 2017 0.0035

Chenjia

ALOS/PALSAR 473 December 2006–March 2011 0.0361
ALOS/PALSAR 474 March 2007–October 2009 0.0622

ALOS/PALSAR-2 146 November 2014–November 2017 0.0130
ALOS/PALSAR-2 39 May 2015–July 2017 0.0275

TerraSAR-X 21 February 2016–November 2016 0.0345
TerraSAR-X 165 January 2016–November 2016 0.0128

Sentinel-1A/B 135 September 2016–October 2017 0.0413

Moshigou

ALOS/PALSAR 473 December 2006–March 2011 0.0300
ALOS/PALSAR 474 March 2007–October 2009 0.0402

ALOS/PALSAR-2 146 November 2014–November 2017 0.0691
ALOS/PALSAR-2 39 May 2015–July 2017 0.0675

TerraSAR-X 21 February 2016–November 2016 0.0509
TerraSAR-X 165 January 2016–November 2016 0.0569

Sentinel-1A/B 135 September 2016–October 2017 0.0814

Three InSAR-derived products, including the deformation maps, SAR intensity images and the
DEM gradient map are combined to detect active landslides. We set a stability threshold range of −1 cm
to 2 cm, and set the threshold of DEM slope at 10◦. First, active landslides are provisionally identified
by independent InSAR measurements from the single satellite orbit datasets. Afterwards, landslide
candidates from different satellite tracks are combined into a mosaic. Some landslide candidates are
further cross-validated by independent InSAR observations from different satellite tracks.

A total of 32 potential landslide areas are identified from December 2006 to March 2011 (the
first stage), and a total of 48 active landslides are identified from January 2016 to November 2016
(the second stage), which are shown in Figure 11. Note that the deformation rate calculated with L-band
ALOS/PALSAR data is merged together and the single small landslides cannot be distinguished due to
their low spatial resolution with respect to X-band TerraSAR-X data. Therefore, the potential landslide
areas in Figure 11a may contain several small active landslides. It can be seen that the Fangtai landslide
group contains one large landslide area for the first stage and three small landslides for the second
stage; the Xinyuan landslide group contains one landslide for the first stage and three small landslides
for the second stage; the Dangchuan landslide group contains one large landslide area for the first
stage and eleven small landslides for the second stage; the Huangci landslide group contains one
landslide for the first stage, and no detectable active landslides for the second stage; the Yehugou
landslide group contains four landslides for the first stage and six landslides for the second stage;
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the Jiaojiaya landslide group contains two landslides for the first stage and one landslide for the second
stage; the Jiaojia landslide group contains five landslides for the first stage and three landslides for the
second stage; the Chenjia landslide group contains ten landslides for the first stage and nine landslides
for the second stage; and the Moshigou landslide group contains six landslides for the first stage and
nine landslides for the second stage. The distribution of landslides identified by the InSAR technique
is in good agreement with that identified by field geological survey [11].

 
Figure 11. The distribution of the landslides detected by the InSAR technique from December 2006
to November 2016. The blue polygons indicate the distribution of landslide groups, and the red
solid bodies indicate the shapes and the locations of identified landslides. (a) The distribution of the
landslides from December 2006 to March 2011 detected from ALOS/PALSAR images with tracks 473
and 474; (b) The distribution of the landslides from January 2016 to November 2016 detected from
ascending and descending TerraSAR-X images.

4.3. Landslide Identification Based on SAR Intensity Changes and DEM Errors

On 1 October 2017, three large landslides, namely Dangchuan No.4 (DC#4), No.5 (DC#5) and No.9
(DC#9) landslides, occurred simultaneously and released a volume of about 33.9 × 104 m3 of debris.
The photo of the scene after the landslides is shown in Figure 12a. Figure 12b shows an unwrapped
interferogram formed from two SAR images of 28 September 2017 and 10 October 2017, which covered
the date of the landslides. No useful information can be obtained due to the serious decorrelation over
the landslide area caused by the mass transformation. In this case, SAR intensity change method is
applied to locate the landslide area. The two closest SAR intensity images from the Sentinel-1A/B data
covering the landslide event are selected, shown in Figure 12c,d. It can be seen from these figures that
the intensity information of the landslide area clearly changed after the landslide occurred. The three
landslides were clearly recorded in the intensity map in Figure 12d. However, due to the low spatial
resolution (16 m) of Sentinel-1A/B images with respect to the landslide extent (about 140 m in width
and 270 m in length), the whole landslide area cannot be precisely delineated by the SAR intensity
change map. In order to quantitatively estimate the volume change caused by the landslides, DEM error
is estimated with the interferograms generated after these events. Six high-quality interferograms from
Sentinel-1A/B data with short temporal baseline and long spatial baseline are selected to calculate
DEM error based on Equation (1), and are shown in Figure 13. Note, negative values (red color)
represent a decrease in elevation (the source area) and positive values (blue color) indicate an increase
in elevation (the deposit area). It is evident that serious DEM errors appeared in both the source area
and deposit area. Two areas are completely and precisely mapped based on the DEM error estimation.
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Figure 12. (a) A scene photo after the occurrence of the Dangchuan No. 4 (DC#4), Dangchuan
No. 5 (DC#5) and Dangchuan No. 9 (DC#9) landslides; (b) The unwrapped interferogram generated
from Sentinel-1A/B data acquired on 28 September 2017 and 10 October 2017 in SAR coordinate;
(c) The intensity image of Sentinel-1A/B data in SAR coordinate acquired on 28 September 2017 before
the landslide occurred; (d) The intensity image of Sentinel-1A/B data in SAR coordinate acquired on
10 October 2017 after the landslide occurred.

Figure 13. The DEM changes after the Dangchuan No. 4, Dangchuan No. 5 and Dangchuan No. 9
landslides calculated with Sentinel-1A/B SAR data.

5. Discussion

In order to assess and generate the multi-temporal inventory maps, some concerns are discussed
with respect to the effects of wavelength, resolution, track direction and local incidence angle.

5.1. The Effects of Different SAR Sensors and Bands

The main features of SAR sensors include the resolution, wavelength and data duration. The Jiaojia
landslide group is taken as an example to illustrate the effects of different SAR sensors and bands.
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The line-of-sight deformation rates of the landslide group (Figure 14) are independently calculated
by three different satellite datasets with different spatial resolutions and wavelengths, including
L-band ALOS/PALSAR-2 datasets (Figure 14a), X-band TerraSAR-X datasets (Figure 14b) and C-band
Sentinel-1A/B datasets (Figure 14c). It can be seen from Figure 14 that the deformation results for SAR
sensors with different spatial resolutions and wavelengths are significantly different in the landslide
area. Three active landslides, namely Jiaojia No.5 (JJ#5), Jiaojia No.6 (JJ#6) and Jiaojia No.9 (JJ#9)
(as shown in Figure 14d) were successfully identified by X-band TerraSAR-X datasets, but failed to be
identified from both L-band ALOS/PALSAR-2 images and C-band Sentinel-1A/B images. In 2017,
Peng et al. [11] identified three active landslides based on aerial images, DEM and field investigations.
The landslides identified by X-band TerraSAR-X data in the present study are in good agreement with
the results obtained by Peng et al. We conducted a field investigation in August 2018 to further validate
the reliability of TerraSAR-X data identified landslides. The scene photos of the JJ#5 and JJ#6 landslides
are shown in Figure 15, where dense cracks were distributed. A crack with a maximum width of
about 55 cm was found at the back edge of the JJ#6 landslide. Three landslides have lengths of about
118 m, 326 m and 100 m, and widths of about 49 m, 108 m and 66 m, respectively, and the multi-looked
pixel sizes of ALOS/PALSAR-2 images, TerraSAR-X images and Sentinel-1A/B images are about
6.5 m, 3 m and 16 m, respectively. Additionally, L-band and C-band data have lower sensitivity to
the surface deformation than X-band data. Therefore, it can be inferred that the L-band and C-band
data are not suitable for the detection of small spatial scale and small deformation loess landslides.
Nevertheless, L-band ALOS/PALSAR-2 and C-band Sentinel-1A/B data show higher coherence than
X-band data, which can be applied for long term surface deformation monitoring even with a large
deformation gradient.

Figure 14. Average line-of-sight deformation rate maps for the Jiaojia landslide group. (a) Descending
ALOS/PALSAR-2 datasets acquired from May 2015 to July 2017; (b) Descending TerraSAR-X datasets
acquired from January 2016 to November 2016; (c) Descending Sentinel-1A/B datasets acquired from
September 2016 to October 2017; (d) UAV photograph. The black dotted line indicates the range of the
Jiaojia landslide group, and the red dotted line indicates the identified landslides.
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Figure 15. Scene photos, taken in August 2018, of: (a) the Jiaojia No.5 landslide (JJ#5); and (b) the
Jiaojia No.6 landslide (JJ#6). The red dotted line represents the boundary of the landslide, and the red
solid line with arrow indicates the downslope direction.

5.2. The Effects of Satellite Track Direction

The Xinyuan No.2 landslide is taken as an example. Peng et al. [11] identified this landslide on
the basis of aerial images, DEM and field investigations in 2017. Figure 16 shows the line-of-sight
deformation rates of the Xinyuan No.2 landslide obtained from ascending (Figure 16a) and descending
(Figure 16b) TerraSAR-X datasets from January 2016 to November 2016. It can be seen that the landslide
is identified independently by both ascending and descending TerraSAR-X data, but that there are great
differences in the range and magnitude of the deformation. A scene photo of the landslide was taken in
August 2018, as shown in Figure 16d. Dense cracks are visible on the body of the landslide, implying
that the rupture surface had run through. The imaging geometries of ascending and descending data
and the main landslide direction are shown in Figure 16c. The azimuth of the landslide ranges from
80 to 220◦ (the main azimuth of the landslide is about 130◦), and the slope angle ranges from 10 to
40◦ above the horizontal surface. The flight directions of ascending and descending of TerraSAR-X
satellite are −9.7◦ and 189.6◦, respectively, and the incidence angles are 41.2◦ and 41.8◦, respectively.
It can be seen from Figure 16c that the landslide moving in a downslope direction shows movement
away from the ascending line-of-sight direction (in red), while movement towards the descending
line-of-sight direction (in blue). The different shapes of landslide in geodetic coordinate between
ascending and descending SAR data indicate the different sensitivity of two imaging geometries to
different local deformation directions. For example, the small deformation region of descending data
indicates that the edge of the landslide was approximately parallel to the descending satellite flight
direction, and hence no deformation can be sensed. In this case, the ascending and descending SAR
images have been combined to achieve the complete deformation fields and to identify the whole
landslide regions.
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Figure 16. The line-of-sight deformation rate maps of the Xinyuan No.2 landslide. (a) Ascending
TerraSAR-X datasets; (b) Descending TerraSAR-X datasets; (c) The perspective topographic map of the
landslide obtained by the UAV DEM with a spatial resolution of three meters. The black solid lines
indicate the geometry of the ascending image, the red lines indicate the geometry of the descending
image and the blue solid line indicates the main landslide direction; (d) A scene photo of the Xinyuan
No.2 landslide taken in August 2018. The red dotted line represents the boundary of the landslide.
Cracks can be seen in the landslide body in the enlarged photo.

5.3. The Effects of the SAR Geometric Distortions

Due to the side-looking imaging geometry of SAR satellites, geometric distortions including
layover, shadow and foreshortening are inevitable in mountainous regions, which will cause some
blind areas in single-orbit observations and seriously decrease the capability of landslide identification.
The degree of geometrical distortion is determined by the local slope of the topography and the SAR
satellite geometry. For landslide identification by ascending and descending SAR datasets, geometric
distortions will occur in different areas, which can lead to inconsistency in the results from ascending
and descending tracks [47]. Figure 17a,b shows the deformation rate maps for the Dangchuan landslide
group obtained from ascending and descending TerraSAR-X datasets, respectively. Figure 18a,b shows
the deformation rate maps for the Fangtai landslide group. It can be seen from Figure 17a,b and
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Figure 18 that the deformation rates calculated with ascending and descending data are inconsistent.
Geometric distortions are mapped for the ascending and descending TerraSAR-X images by exploiting
local terrain information (i.e., local terrain slope angle and local terrain azimuth) and SAR imaging
geometries (i.e., the azimuth and local incidence angle of the satellite), which are shown in Figure 19a,b,
respectively. It can be observed in Figure 19 that some regions in the Dangchuan landslide group are
affected by severe geometric distortions (i.e., layover) in the ascending image while some regions in the
Fangtai landslide group are affected by severe geometric distortions (i.e., layover) in the descending
image. The geometric distortions for the ascending and descending data are quite complementary.
Therefore, we can infer that the deformation rates of the Dangchuan landslide group calculated with
ascending data are contradictory to the deformation rates calculated with descending data because of
the effects of the geometric distortions. The geometric distortions in the descending images caused
some blind areas in the Fangtai landslide group, which results in some active landslides being missed
when using only descending data. Therefore, it is demonstrated that the combination of ascending
and descending InSAR measurements can effectively reduce geometric distortion effects in rugged
terrain. Thus, the identification of loess landslides can be effectively achieved.

 

Figure 17. The Dangchuan landslide group. (a) Average line-of-sight deformation rate map calculated
with ascending TerraSAR-X data from February 2016 to November 2016; (b) Average line-of-sight
deformation rate map calculated with descending TerraSAR-X data from January 2016 to November
2016; (c) A scene photo of the Dangchuan No.3 landslide (DC#3). The red dotted line represents the
boundary of the landslide; (d) A scene photo of the Dangchuan No.4 landslide (DC#4). The red dotted
line represents the boundary of the landslide.
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Figure 18. The Fangtai landslide group. (a) Average line-of-sight deformation rate map
calculated with ascending TerraSAR-X data from February 2016 to November 2016; (b) Average
line-of-sight deformation rate map calculated with descending TerraSAR-X data from January 2016 to
November 2016.

Figure 19. Geometric distortions in the TerraSAR-X ascending (a) and descending (b) images over the
Heifangtai loess terrace. The white dotted line indicates the location of the Fangtai landslide group
(G1) and the Dangchuan landslide group (G3).

For the Dangchuan landslide group, previous landslide identification studies mainly focused on
aerial images, DEM, optical remote sensing and field investigations [11,67–69]. In this study, the InSAR
technique is used for the first time to detect potential landslides. The results of landslide identification
using the InSAR technique are in good agreement with those in the literatures. A field investigation
was conducted in August 2018 showed that dense cracks and sliding scarps were found in the whole
of the Dangchuan landslide group. The scene photos after the occurrence of the Dangchuan No.3
(DC#3) and Dangchuan No.4 (DC#4) landslides are shown in Figure 17c,d. Two long cracks (as shown
in Figure 17d) with widths of about 30 cm and 40 cm were found at the back edge of DC#3 and
DC#4, respectively.

5.4. The Effects of Differences in Local Incidence Angle between Two Adjacent SAR Satellite Tracks

The line-of-sight deformation rate maps for the Dangchuan landslide group between 2007 and
2009 are calculated using ALOS/PALSAR datasets from the adjacent tracks 473 and 474, as shown in
Figure 20a,b, respectively, where it can also be seen that a good agreement in the spatial distribution
of the active deformation areas can be obtained from both adjacent track datasets. The maximum
deformation rates calculated using track 473 and track 474 are −90 mm/year and −100 mm/year,
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respectively. Scatter plots of the deformation rates obtained from tracks 473 and 474 are shown in
Figure 20c. The root mean square error (RMSE) of the difference and the correlation coefficient are
7.3 mm/year and 0.81, respectively, which shows a good consistency of deformation rates. However,
it can be observed in Figure 20c that a systematic offset still exists between the two results. In order to
explain this difference, the differences in the flight direction and local incidence angle between the
two adjacent satellite track data are considered. The flight directions of the ALOS/PALSAR satellite in
tracks 473 and 474 are −10.3◦ and 9.9◦, respectively, and the local incidence angles of tracks 473 and
474 at the Dangchuan landslide group are 37.2◦ and 39.8◦, respectively. The deformation rates in the
line-of-sight direction and in the downslope direction along line BB’ are shown in Figure 20d, where it
can be seen that two large deformed funnels correspond to the Dangchuan No.2 and Dangchuan No.3
landslides, which occurred in April 2015 and August 2015, respectively. Furthermore, the discrepancy
between the two profiles in the downslope direction is much less than that in the line-of-sight direction,
which indicates the high-accuracy of InSAR measurements.

Figure 20. Average line-of-sight deformation rate maps for the Dangchuan landslide group calculated
with ascending ALOS/PALSAR datasets. (a) Using track 473 acquired from February 2007 to
August 2009, where the black solid line indicates the location of the profile BB’; (b) Using track 474
acquired from March 2007 to October 2009; (c) The correlation graph for the line-of-sight deformation
rates calculated with tracks 473 and 474; (d) Four profiles of landslide deformation rates along the line
BB’ from tracks 473 and 474, in which the deformation in the line-of-sight direction and downslope
direction are plotted with squares and circles, respectively.

6. Conclusions

The InSAR technique is firstly explored to detect small-scale loess landslides reliably and
accurately over a large area. The flowchart of multi-temporal loess landslide inventory mapping



Remote Sens. 2018, 10, 1756 24 of 28

is proposed considering its special characteristics. Some key data processing strategies are summarized
as follows: (1) It is very important to select SAR images and external DEM data with meter-level
resolution for small-scale loess landslide detection. Additionally, dense SAR acquisition time and
small multi-look number are two key factors for improving the capability of landslide detection;
(2) Two special data procedures including DEM error correction and phase unwrapping error detection
and correction must be conducted in the data processing. Furthermore, high-quality interferograms
should be selected to obtain surface deformation; (3) For single-orbit InSAR observations, it is difficult
to detect landslides with deformation parallel to the direction of the satellite flight or located in regions
of SAR geometric distortion.

The combination of multi-sensor and multi-temporal SAR datasets is used to investigate
small-scale loess landslides in the Heifangtai loess terrace from December 2006 to November 2017.
The InSAR-derived products including deformation map, SAR intensity image and external DEM
are combined to detect and map potential loess landslides and already-occurred landslides. Three
different wavelengths of SAR datasets are compared in detail in term of landslide inventory mapping.
The phase information and intensity information of SAR images are quite complementary for the
identification of potential and already-occurred small-scale loess landslides. As for the potential for
loess landslide detection, all SAR datasets can measure most landslides. Some big differences mainly
result from the different satellite tracks, i.e., ascending and descending tracks, and different SAR
wavelengths and spatial pixel sizes. Some slight differences are caused by the slight variation in local
incidence angle between two adjacent tracks.

Two main stages of surface deformation of the whole Heifangtai loess terrace from December
2006 to November 2017 are obtained by the InSAR technique. A total of 32 active landslide areas are
detected from December 2006 to March 2011, and 48 active landslides are detected from January 2016
to November 2016. These potential landslides are all distributed on the edge of the Heifangtai terrace.
The spatiotemporal evolution of landslides is analyzed in details. Additionally, it is observed that loess
landslides and loess-bedrock landslides show different formation processes. This research is of great
significance to the early-warning and prevention of loess disasters in the study area.
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