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Uncertainties in Estimating Magma Source Parameters
from INSAR Observation

Wenyu Gong,' Zhong Lu,? and Franz Meyer'

ABSTRACT

Satellite radar interferometry (InSAR) has been proven Lo be an essential technique for measuring volcano-wide
surface deformations at a spatial resolution of tens of meters and centimeter-level accuracy. For many volcanic
systems, InSAR observations have been the main data source for studying geophysical processes at active volca-
noes and are used frequently to estimate volcano source parameters using inverse modeling techniques. This
chapter evaluates how the accuracy of estimated source model parameters is affected by typical errors in radar
phase measurement such as baseline-induced phase signals, atmospheric distortions, and decorrelations noise.
To mathematically study the influence of these errors, we use the Mogi source model as example and discuss how
the different error components in InSAR deformation measurement affect the uncertainties of estimated source
model parameters. To understand this inherent processes, nonlinear least squares and Monte Carlo simulations
are used to generate the posterior probability distribution of source parameters. In addition, the impact of
approximations in the Mogi source model are also discussed in this paper, including the flat-surface assumption,
the disregard of magma compressibility, and the Poisson’s ratio,

7.1. INTRODUCTION

There are approximately 1500 volcanoes on Earth that
have erupted in the past 10,000 years. Today volcanic
activity affects the lives and livelihoods of a rapidly grow-
ing number of people around the globe. About 20 volca-
noes are erupting on Earth at any given time; 50-70 erupt
cach year, and about 160 erupt each decade [GVP, 2015].
Volcano monitoring is key to mitigating the adverse
impacts of volcanic activity [VHP, 2015]. In general, the
“eruption cycle” of a volcano can be conceptualized as a
series of events from deep magma generation to surface
eruption, including such stages as partial melting, initial
ascent through the upper mantle and lower crust, crustal
assimilation, magma mixing, degassing, shallow storage,
and finally ascent to the surface [Dzurisin, 2003; 2007].

'Geophysical Institute, University of Alaska Fairbanks,
Fairbanks, Alaska, USA
2Southern Methodist University, Dallas, Texas, USA

This process is complex, varying from one eruption to the
next and from volcano to volcano. In many cases, volcanic
eruptions are preceded by pronounced ground deforma-
tion in response to increasing pressure from magma
chambers or due to the upward intrusion of magma.
Therefore, monitoring and modeling volcanic deforma-
tion constitutes a critical element in providing warning of
impending eruptions, reducing loss of life, and mitigating
impact on property [Dzurisin, 2007].Together with seis-
mology, continuous ground deformation measurements
(like GPS), geology/petrology, and gas geochemistry
observations, the spatially dense deformation field
derived satellite interferometric synthetic aperture radar
(InSAR) can play a pivotal role in constraining the most
important parameters needed to assess short-term vol-
canic hazards and better understand volcanic processes.
InSAR imaging of ground surface deformation is con-
taminated by multiple error sources, (e.g., atmospheric
artifacts), contributions from inaccurate satellite orbit
and auxiliary topography model, reducing the sensitivity
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and accuracy of this technique in geodetic applications.
In the studies of earthquake source models by using
InSAR-derived observations, previous efforts have been
made on assessing the uncertainties and trade-offs of
estimated earthquake source parameters, where the simu-
lated interferograms with realistic noise levels have been
generated and inverted [e.g., Dawson and Tregoning, 2007,
Lohman and Simons, 2005). Even though InSAR has
been widely used to estimate the volcanic source param-
eters (geometry and volume change), there are limited
reports on how InSAR observations could reduce the
quality of estimated source parameters. For example, Lu
et al. [2003] reported that the atmospheric contamination
could lead to biased estimates of source depth in studying
Westdahl volcano, Alaska, USA.

In this study, we present a systematic study on esti-
mating uncertainties associated with volcano source
parameters from InSAR observations, through the
simulated interferometric data and the inversion of
Mogi source model [Mogi, 1958]. The Mogi model is
selected because of its capability in approximating vol-
cano sources, simplicity (hence computational effi-
ciency), and wide use. In the rest of this paper, we will
present a section on uncertainties related to InSAR-
measured volcano deformation, and a brief introduc-
tion to the analytical Mogi source model. The inherent
impacts from InSAR measurement uncertainties on
the estimated volcano source model parameters will be
investigated quantitatively. Finally, a brief discussion
is provided regarding the impacts of the assumptions
in Mogi source model on the estimated source
parameters.

7.2. VOLCANO DEFORMATION FROM INSAR
AND THE ASSOCIATED UNCERTAINTIES

7.2.1. Uncertainties in InNSAR Observations

Interferometric SAR (InSAR) involves the use of two
or more synthetic aperture radar (SAR) phase images of
the same area to generate interferograms [Burgmann
et al., 2000; Lu and Dzurisin, 2014; Massonnet and Feigl,
1998; Rosen et al., 2000; Simons and Rosen, 2007]. The
phase component of a SAR image is controlled mainly by
the round-trip travel time from SAR to ground. Hence,
the interferogram (i.e,, the phase difference of SAR
images) along with a digital elevation model (DEM) can
be used to extract any surface deformation that might
have occurred during the interval between image acquisi-
tions and resulted in a change of distance between satel-
lite and ground. InSAR has been proven an important
observational tool for measuring volcano-wide deforma-
tion at a spatial resolution of tens of meters with centimeler-
level accuracy [e.g., Amelung et al., 2000; Biggs et al.,

2010; Dzurisin et al., 2006; Lu et al., 2000, 2005, 2010; Lu
and Dzurisin, 2014; Massonnet and Feigl, 1998; Poland
et al., 2006; Pritchard and Simons, 2002; Wicks et al.,
1998, 2002, 2006].

Uncertainties in our knowledge of the satellite position
can causc bascline-induced phase ramps in an interfcro-
gram. In addition, the radar phase measurement is also
affected by atmospheric conditions (water vapor in the
troposphere and electron density in the ionosphere) and
by the interaction of the radar signal with the ground sur-
face; therefore, an InSAR image can contain spurious
phase anomalies due to atmospheric artifacts and decor-
relation noise. These errors should be modeled and
removed as much as possible to minimize uncertainties in
deformation source parameters.

To miligate phase ramps as well as lopography-
dependent phase artifacts related to uncertainties in the
SAR antenna positions at the times of image acquisi-
tions (9, ) [e.g., Lu and Dzurisin, 2014], baseline refine-
ment steps are often employed. A commonly used
method is to determine the baseline vector based on an
existing DEM via a least-squares approach [Rosen et al.,
1996]. For this method, areas of the interferogram that
arc used to refine the baseline should have negligible
deformation or deformation that is well characterized by
an independent data source. Because bascline-induced
anomalies are characterized by primarily long-wavelength
ramping fringes, they are alternatively often modeled
and removed using two-dimensional polynomial func-
tions [Biggs et al., 2007].

Inhomogeneity in the atmosphere that results in path
anomalics ((b”p_\_) in InSAR phase images is the most
significant error source in repeal-pass InSAR deforma-
tion measurements. Differences in tropospheric water-
vapor content as well as ionospheric variations at two
observation times can cause differing path delays and
consequent anomalies in an InSAR deformation
image. The tropospheric artifact can be classified into
two types [Hanssen, 2011]: (1) stratified artifact, which
is caused by changes in vertical refractivity profile at
two image acquisition times, is correlated to the local
topography; and (2) turbulent effect, which is caused
by three-dimensional helerogencily in the tropospheric
refractivity at image acquisition times, impacts both
flat and mountainous areas. Atmospheric delay anom-
alies can reduce the accuracy of InSAR-derived defor-
mation measurements from several millimeters under
ideal conditions to a few centimeters under more typi-
cal conditions, thus obscuring subtle changes that
could hold clues to the cause of the deformation [e.g.,
Lu and D:zurisin, 2014]. Generally speaking, atmos-
pheric artifacts have shorter spatial wavelength than
those due to baselines. The difficulty with estimating
water-vapor or ionosphere conditions with the needed
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accuracy and spatial density is an important limiting
factor in deformation monitoring with InSAR. Several
methods have been proposed to estimate the water-
vapor content and remove its effect from deformation
interferograms;

1. The first method is (o eslimale waler-vapor concen-
trations in the target area at the times of SAR image
acquisitions using short-term predictions from weather
models [Foster et al., 2006; Gong et ul., 2014; Jolivet et al.,
2014]. While weather models would be sufficient to cor-
rect stratified atmospheric artifacts over a volcano [Cong
and Eineder, 2012], the problem with this approach is that
current weather models have much coarser resolution (a
few kilometers) than InSAR measurements (tens of
meters). This deficiency can be remedied to some extent
by inlegrating wealther models with high-resolution
atmospheric measurements, but this approach requires
intensive computation.

2. The second method is to estimate water-vapor con-
centration from continuous global positioning system
(CGPS) observations in the target arca [Li et al., 2005].
The spatial resolution (i.e., station spacing) of local or
regional CGPS networks at volcanoes is typically a few
kilometers to tens of kilometers, which renders this
method ineffective in most cases.

3. The third approach to correcting atmospheric delay
anomalies in InSAR observations is to utilize water-
vapor measurements from optical satellite sensors such as
the Moderate Resolution Imaging Spectroradiometer
(MODIS), Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER), and European Medium
Resolution Imaging Spectrometer (MERIS) [Li er al,
2003]. The disadvantage of this method is the require-
ment of nearly simultaneous acquisitions of SAR and
cloud-free optical images.

4. The fourth method extracts the atmospheric con-
tributions from interferometric phases themselves,
including many approaches for mitigating ionospheric
artifacts, for example, split-spectrum, Faraday rotation
related method [Meyer and Nicoll, 2008], azimuth off-
set method, and multiple-aperture interferometry
[Jung et al., 2013]. Additionally, methods that account
for the correlation between atmospheric delays and the
local topography [Bejar-Pizarro et al., 2013], as well
as the spatial variability [Bekaert et al, 2015; Lin
et al., 2010] can be used to correct stratified atmos-
pheric delays. However, those solutions have limited
impacts on reducing turbulent mixing tropospheric
component.

5. The fifth technique is to correct atmospheric delay
anomalies using a multi-temporal InSAR technique [e.g.,
Berardino et al., 2002; Ferretti et al., 2001; Hooper et al.,
2007; Lu and Dzurisin, 2014]. When more than several
SAR images are available for a given study area,

multi-interferogram InSAR processing can be employed
to improve the accuracy of deformation maps. If there is
sufficient knowledge on the deformation behavior, a tem-
poral deformation model can be built and used to con-
strain the atmospheric phase mitigation. Otherwise,
almospheric artilfacls can be removed via spalial-
temporal filtering processes, as they are characterized as
spatially correlated but temporally uncorrelated fringes
while deformation signals are correlated in both space
and time domains. This technique is most promising
when a large SAR stack is available, because more SAR
observations allow better characterization of the spatial-
temporal properties of different interferometric phase
components,

The accuracy of interferometric phase is also affected
by decorrelation noise (¢, ), including the temporal,
geometric, and volumetric decorrelation as well as other
radar receiver noise [Hanssen, 2001; Lu and Dzurisin,
2014]. In volcano studies, decorrelation is aggravated by
surface changes related to volcanic eruptions (lava and
lahar flows, ashfall), seasonal or perennial changes of
snow and ice in high-latitude regions, dense vegetation in
middle to lower regions, and layover or shadowing effects
under complex terrain conditions. In a typical scenario,
the region around a volcano’s summit loses coherence.
Several cxamples [rom C-band data arc given in
Figure 7.1. These examples show than the volcanic sum-
mits often lose coherence even if only summer images
separated by one satellite revisiting cycle are used.
Decorrelation over the volcano peaks, where volcanic
deformation is expected to be largest, can compromise
the accuracy of source parameters estimated from
InSAR data.

An InSAR image might also contain errors due to inac-
curate DEMs (¢, ). Despite the increasing availability of
remote-sensing-derived DEM data, this is a continuous
issue at active volcanoes, as their topography is constantly
modified by eruptive activity. The availability of TanDEM
DEM [Krieger et al., 2007], newly released enhanced 1-
arc-sccond SRTM DEM [SRTM, 2015], and tandem
ERS-1/ERS-2 images [e.g., Lu et al., 2011] can reduce this
error source. Additionally, if multiple SAR images are
available over a study area, the existing DEM can be
updated or refined using interferograms with large spatial
baselines but short temporal separations [e.g., Lu et al.,
2013; Lu and Dzurisin, 2014]. This scheme of baseline
setting is used to reduce impacts from the deformation
signal and other phase artifacts on the DEM as large
spatial-baseline interferograms are more sensitive to the
? 0o a0d the small temporal-bascline reduces the con-
tamination by the deformation signal. The non-
topography-related signals can be further mitigated
based on temporal-spatial statistical properties of differ-
ent phase components (e.g., reduce atmospheric signal
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Figure 7.1 Coherence image examples of volcanoes in high-latitude region during summer to early fall.
Coherence images are overlaying on the corresponding radar intensity images and major volcanoes in the exam-
ple sites are annotated: (a) Envisat data pair of Unimak Island (Alaska, USA) with a 35-day time interval,
(b) Radarsat-1 data pair of Augustine volcano (Alaska, USA) with a 24-day time interval, (c) Envisat data pair of
Klyuchevskaya group of volcanos (Kamchatka, Russia) with a 35-day time interval, (d) geographic locations of the

coherence images shown in (a), (b), and (c).

through stacking). Errors of the inaccurate DEM, which
is a function of ¢ _ and perpendicular baseline, is then
estimated.

Finally, for volcano studies, regional tectonic signals or
other geophysical signals might introduce long wave-
length “artifacts” (¢ ) on volcano-wide deformation, for

topo

urxf)

example, ocean tidal loading that may however have only
small influence on volcano studies (e.g., 3 cm over 100 km
[DiCaprio and Simons, 2008]). Often, this type of long
wavelength signal can be confused with baseline errors
[Zhang et al., 2014] and is likely removed along with the
phase ramp due to baseline error.
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Both ¢, and ¢ , are considered as deterministic
errors, which are error terms that can be modeled
explicitly [Hanssen, 2001]. They can be removed in the
deformation phase reconstruction step or jointly be
estimated in the geophysical model inversion. For
example, ¢ , is modeled as ramps and integrated in
volcano and earthquake model inversions [Gong et al.,
2014; Lu et al., 2010, Sudhaus and Jonsson, 2009]. The
remaining error terms, mainly f;': and ¢, . are
typically considered in the stouhaetlc model that
contributes to the variance-covariance matrix (or
noise model) of the measurements [Hanssen, 2001].
Previous efforts have been made to explicitly integrate
these error sources in the InSAR noise model [e.g.,
Hanssen, 2001; Knospe and Jonsson, 2010; Lohman and
Simons, 2005], such that each pixel can be properly
weighted in the geophysical parameter inversion and
uncertainties of estimated model parameters can be
predicted.

7.2.2. Satellite Line-of-Sight Measurements

The error characteristics of geophysical parameters
derived from InSAR are additionally impacted by the
oblique imaging geometry of SAR sensors, which limits
the measurement sensitivity of InSAR to the projection
of the three-dimensional deformation signal is in the
sensor’s line-of-sight (LOS) direction. Using the notation
by Wright et al. [2004] and Lu and Dzurisin [2014], the
deformation signal for ground pixel / in east, north, and
up directions (d,,, d;,, d;,,]) is projected into the
sensor’s LOS direction by multiplying by the unit vector
A =[-cos¢-sinf, sing-sinf, cosf], where 0 is the inci-
dence angle and ¢ is the satellite track angle clockwise
from north.

d

idos

=A: [dlt’ in? di,u:|T (71)

Inequation (7.1),4d,,,, d, . d, , and d, are deformation
measurements in the LOS, east, north and up direc-
tions in the ith interferogram, respectively. Thus, an
interferogram provides a scalar one-dimensional
deformation measurement at every coherent pixel.
When interferograms in multiple geometries are avail-
able, one can solve equation (7.1) to derive the 3-D
deformations. However, it is difficult to resolve the
displacements in N-S direction with the near-polar
orbiting satellite data in general [ Wright et al., 2004].
The offset tracking method or multiple aperture
InSAR (MAT) can be used to extract the along-track
displacement under favorable conditions [Bechor and
Zebker, 2006; Jung et al., 2011].

7.3. RETRIEVAL OF MAGMA SOURCE
PARAMETERS FROM INSAR AND ASSOCIATED
MEASUREMENT UNCERTAINTIES

7.3.1. Mogi Source

To better understand volcanic processes, mathemati-
cal models are often employed to relate the physical
parameters of a magma source to the deformation
measurements made at the surface (e.g., via InSAR or
GPS). The high spatial resolution and large spatial
extent of surface deformation data provided by InSAR
make it possible to constrain and compare models with
various source geometries and gain insight into the
most likely shape, location, and volume change within
a volcanic source. Typical source geometries include
the point pressure source [Mogi, 1958], finite spherical
source [Mctigue, 1987], dislocation sources (sill or dike
source) [Okada, 1985], ellipsoidal sources [Davis, 1986;
Yang et al., 1988], and penny-crack sources [Fialko
et al, 2001]. Among the physical parameters, the loca-
tion and volume change of the source are usually of
most interest,

The most widely used source in volcano deformation
modeling is the point pressure source (widely referred to
as the Mogi source) embedded in an elastic homogeneous
half-space [Mogi, 1958]. In a Cartesian coordinate sys-
tem, the predicted displacement u at the free surface due
to a change in volume AV or pressure AP of an embedded
Mogi sphere is:

(%, — X/, %, = X5,—%, ) = AP(1—v %

(7.2)

where x,, x,, and x, are the horizontal coordinates and
depth of the center of the sphere, R is the distance
between the center of the sphere and the observation
point (x, x,, and 0), AP and AV are the pressure and
volume changes in the sphere, and v is Poisson’s ratio of
the host rock (typical value is 0.25). Furthermore, r_is the
radius of the sphere, and G is the shear modulus of the
host rock [Delaney and Mctigue, 1994; Johnson, 1987).

7.3.2. Nonlinear Least-Squares Estimation of Mogi
Source Parameters

The determination of the Mogi source geometry and
volume change from InSAR deformation measurements
is a typical nonlinear inverse problem. The problem can
be solved by a nonlinear optimization that searches for
the optimal source model parameters by minimizing a
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misfit function. The misfit (S) describes the level of disa-
greement between the observed deformation (4, ) and
the source model prediction [Cervelli et al., 2001; Lu and

zurisin, 2014] that accounts for unmolded residuals,
including InSAR measurement errors and impacts from
oversimplifications in the source model (c.g., clastic hall-
space), among others. Equation (7.3) shows the minimum
misfit constraint in the residual variance:

Z(/\ u(X')—d,,, )z

(7.3)
N-=p

S\ =argmin

in which N is the number of coherent pixels in an InSAR
image and p is the number of unknowns in the analytical
volcano source model; X is the vector of the source
geometry (x,, x,, and x;).

Various strategies are available to solve the inverse
problem by finding global minima (e.g., simulated anneal-
ing) and/or local minima (e.g., nonlinear least-squares
schemes) [Cervelli et al., 2001; Feigl et al., 1995; Lu and
Dzurisin, 2014; Press et al., 2007; Sudhaus and Jonsson,
2009; Wright et al., 1999]. The benefit of global minima
algorithms is the ability to discriminate among multiple
local minima in the solution space [Mosegaard and
Tarantola, 1995]. Otherwise, with a reasonable initial
guess of model parameters, the nonlinear least-squares
algorithms can be used [Cervelli et al., 2001; Feigl et al.,
1995], which is computationally more efficient. In the rest
of this paper, the Levenberg-Marquardt algorithm, a
nonlinear least-squares algorithm that optimizes the
solution between iterative linearization and gradient
methods [Marquardt, 1963; Press et al., 2007], is used to
solve for the inversion of Mogi source parameters with
InSAR data.

7.3.3. Deriving Uncertainty Measures for Estimated
Mogi Model Parameters

After the source geometry and associated volume
change are determined, the next goal is to assess the qual-
ity of estimated parameters. Thus, we need to find the
associated uncertainties (or confidence level, posterior
probability distribution) of model parameters. In this
section, we will discuss impacts on uncertainties (poste-
rior probability estimates) due to measurement errors.
Synthetic deformation interferograms are generated from
a predefined Mogi source and then converted to radar’s
LOS geometry and a coherence map of Westdahl volcano
(Fig. 7.1a) is used Lo approximate realistic coherence con-
ditions for complex volcanic terrains.

There are various methods that can be used to propagate
observational errors to the estimate parameters, for exam-
ple, linearization, likelihood, Monte Carlo simulation, and

bootstrap [Donaldson and Schnabel, 1987; Draper and
Smith, 1966; Press et al., 2007]. A linearization method
calculates the uncertainties of estimated parameters with
EAu(X)~d )
N'=p
[Donaldson and Schnabel, 1987]. Notice that N’ is the
number of independent deformation measurements. For
instance, the parameter variance-covariance matrix can
be computed with Jacobian matrix (J) as S'(J7-J)™".
However, due to the dependency of InSAR deformation
measurements, N’ is generally less than V. Without a prop-
erly determined N, the linearization method will underes-
timate the uncertainties of estimated parameters. The
advantage of the linearization method is that it is less com-
putationally intensive.

The Monte Carlo simulation and the bootstrap meth-
ods, which can be performed with less computational
efficiency, have been suggested to be more reliable in
constructing the confidence intervals of the estimated
parameters [Arnadottir and Segall, 1994; Donaldson and
Schnabel, 1987]. The bootstrap method can be applied
without sufficient knowledge of the measurement error,
while special attention is needed to draw random sam-
ples to satisfy the statistical preassumption [Lisowski,
2007; Press et al., 2007]. Additionally, there has been
overestimation reported on confidence intervals when
using the bootstrap method [Cervelli et al., 2001]. When
prior information or valid assumptions about the sta-
tistical properties of the measurement errors are avail-
able, the Monte Carlo method is supposed to correctly
characterize the error properties of the estimated
parameters [Donaldson and Schnabel, 1987; Press et al.,
2007]. The Monte Carlo method has been implemented
in many geodetic studies to determine the posterior
probability distribution of volcanic or earthquake
model parameters [Feigl et al, 1995, Hooper et al.,
2007; Wright et al., 2003]. In order to provide accurate
results on source model parameter uncertainties, we
generate simulated error-contaminated unwrapped
interferograms so that statistical properties of InSAR
residuals are known and have been set up to approxi-
mate the reality conditions. Taking the advantage of
the known InSAR error properties and stable perfor-
mance of Monte Carlo method in providing reliable
results, we choose the Monte Carlo method in our study
to derive uncertainties of the estimated source model
parameters.

the estimated residual variance S'=

7.3.3.1. Summary of Main InSAR Measurement
Errors and Error Propagation Approach

Summing up the errors discussed in Section 7.2.1, the
main contribution of InSAR deformation phase residu-
als e is shown in equation (7.4).
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e=¢ _d)dyﬁ; = (7.4)

aups + ¢orb + ¢l0’70 + decor

According to the spatial properties of above error
components, e can be categorized into three groups: (1)
spatial uncorrelated error (€") that contributes to diago-
nal elements (variance) of measurements’ variance-covariance
matrix. The variance characterizes the quality of the
single point and can be predicted or estimated from
coherence condition (¢, ) [Hanssen, 2001]; (2) locally
correlated errors (¢°) that are mainly caused by localized
atmospheric structures (¢,,.), which are correlated within
a few kilometers [Colesanti et al., 2003]; and (3) long-
wavelength errors €/, which include long-wavelength
atmospheric signal components ¢;,, and ¢, [Biggs et al.,
2007]. ¢, is related to the accuracy of external terrain
model; this term will not be considered here as this
deterministic term can be removed when interferograms
of different baselines are available. Additionally, topogra-
phy-related atmospheric signal will also not be discussed
in the following part, given it can be modeled and reduced
via many previous discussed methods (see Section 7.2.1).
Overall, both ¢ and ¢’ create spatial correlations among
InSAR pixels that leads to nonzero covariance and affect
model parameter confidence intervals [Hanssen, 2001;
Lohman and Simons, 2005].

To conduct our error analysis, we start with a simulated
surface inflation data set corresponding to a Mogi-type
volcanic source with source geometry of x; =21km, x'2 =16,
x, =6km in local coordinates and A¥=10x10° m*. The
lower-left corner is defined as the origin of the local coor-
dinate used in the inversion. For every error type, we use
Monte Carlo simulation techniques to create a sufficient
number of simulated phase screens that are representative
for the individual error type. We add these phase screens to
the simulaled Mogi-lype deformation map Lo create a
random sample of distorted InSAR data. For every simulated
phase map, we apply the previously mentioned nonlinear
least-squares inversion with the same initial bounds to esti-
mate Mogi source parameters, The posterior probability
distributions for these parameters can then be generated
and analyzed according to input InSAR error types and
mean values of distributions are expected to approximate
the true Mogi source parameters.

7.3.3.2. Effects of €', €%, and €' on the Accuracy
of Source Model Parameters

The approaches to generate random realizations of the
three different error types together with the resulting pos-
terior distributions for the four Mogi model parameters
are summarized in the following:

1. The spatially uncorrelated errors (") are simulated
as normally distributed random signals and added to true
deformation maps. The standard deviation () of ¢" (one

way error contribution) in the individual interferogram
ranges from about 2 to 10 mm with median value of
about 6 mm. An example of InSAR deformation map
with € is given in Figure 7.2b where the noise o is about
6 mm. Assuming the analyzed interferometric targets are
single-looked distribuled scalterers, Lheir phase variances
can be predicted from the magnitude of complex coher-
ence (y) and Euler’s dilogarithm [Bamler and Hartl, 1998].
Hence, a phase noise o of 6 mm corresponds to an unfil-
tered coherence level of above 0.5 in case of C-band data.
The posterior probability distribution of estimated
parameters due to ¢" error conditions are approximately
normally distributed for all four Mogi source parameters
(Fig. 7.3). The confidence intervals at 95% confidence
level (26) are shown as red lines in Figure 7.3 and the
standard deviations and mean values of the posterior dis-
tribution are listed in Table 7.1. Figure 7.3 shows that the
addition of random noise does not lead to significant
biases of the estimated parameters.

To further analyze the influence of random errors, we
increase the noise level of ¢" to 6mm <o <14mm with
median value of about 10 mm that might correspond to
severe decorrelation of distributed targets in C-band
interferograms. For this setup, the standard deviations of
the posterior distributions increase (see Table 7.1) but still
maintain normal distribution with mean values that are
statistically identical to their true values (at the 95%
confidence level).

2. The locally correlated errors (¢“), which are domi-
nated by local scale atmospheric distortions [Emardson
et al., 2003; Hanssen, 2001; Lohman and Simons, 2005],
are simulated as a set of atmospheric phase screens. The
simulated ¢“ were generated using a fractal surface with a
dimension factor of 2.67, which is an typical value for the
dimension factor as suggested for the atmospheric signal
simulation [Hanssen, 2001; Kampes, 2006]. The family of
€ used in this experiment has standard deviations of less
than 12 mm with a median value of 3.9 mm. This value
range has been set to resemble the realistic situation: for
example, atmosphere error standard deviation has been
reported to be less than 15 mm in southern San Andreas
[Lyons and Sandwell, 2003], and less than 12 mm in mul-
tiple test sites (Mexico City, Netherlands, and South
Australia; Liu [2012]). An example is given in Figure 7.2¢
with a noise standard deviation of 3.3 mm. Note that the
simulated ¢“ mainly accounts for the atmosphere turbu-
lence mixing; the standard deviation of the total atmos-
pheric artifact in an interferogram is supposed to be
larger, given that the stratification is also included. Similar
to the last experiment, through Monte Carlo simulations,
we can draw the posterior probably distributions for all
estimated parameters (Fig. 7.4). The source parameter’s
standard deviations are shown in Table 7.2 and range
from | km to 1.6 km for the positions of the Mogi source.
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Figure 7.3 Example of probability distribution of estimated parameters where measurements have spatially
uncorrelated errors e”. Red bars denote 2 confidence bounds and black bars denote the true value of the Mogi
source parameters (the same holds for Figures 7.4 and 7.5).

For each of the four parameters, the probability distri-
bution is approximately normal. In Figure 7.4c, the esti-
mated probability distribution of the depth is distorted
on the high end by our choice for the initial bounds
(2-8 km) of the nonlinear least-squares inversion. While
the mean values of x; and AV differ from the true values,
they are still statistically identical to their theoretical val-
ues al the 95% conlidence level. Given the trade-off
between these two parameters [Mann and Freymueller,
2003], it was suggested that the ¢“ errors could cause dif-
ficulties in distinguishing these two parameters.

3. The third dalascl was generaled by simulating long-
wavelength errors (¢) whose shape is approximated by
planar phase screens as shown in equation (7.5). These
phase screens are used to model both ¢, , and long-wave-
length atmospheric signal components [Biggs et al., 2007,
Luand Dzurisin, 2014]. An example is given in Figure 7.2d
with noise standard deviation of about 3.3 mm and N-§
slope coefficient of 0.26 mm/km and W-E slope coefli-
cient of ~0.23 mm/km.

!

€ =a-x+b-x,+c¢ (7.5)
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Table 7.1 Mean and Standard Deviation () of Estimated Mogi Source Parameters With ¢

Errors in Deformation Measurements

x; [km] x5 [km] x, [km] AV x10% m?
Lower Mean 21.00 16.00 6.01 10.00
e o 0.05 0.03 0.15 0.14
Higher Mean 21.00 16.00 6.02 10.00
& o 0.07 0.05 0.23 0.22

Note: The true values of source parameters are x, =21 km, x, =16 km, x; =6 km, and

AV=10 x10° m’.
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Figure 7.4 Probability distribution of estimated parameters when measurements have spatially correlated errors ¢°.

Table 7.2 Mean and Standard Deviation () of Estimated Mogi Source Parameters When

the Deformation Measurement Contains ¢? and ¢/, Respectively

x; tkm] Xy [kml| x; [km] AV x106 m?
e Mean 21.12 16.06 6.53 10.97
o 1.39 1.23 1.59 2.82
61 Mean 20.99 15.91 7.81 12.58
o 2.09 2.69 0.58 3.60
o Mean 21.09 16.00 7.39 11.59
2
o 1.27 1.40 0.90 24

Note: The true values of source parameters are x; =21 km, x; =16 km, x; =6 km, and

AV=10 x10° m>.

The parameters [x, x,] in equation (7.5) are the local
coordinates of a pixel in the synthetic datasets, while a
and b arc the simulated cast-west and north-soulh
slope coefficients, and ¢ is the intercept. Biggs et al.
[2007] has found that for typical ERS-type SAR
interferograms, long-wavelength phase ramps have
slope coefficients that are roughly normal distributed,
centered to zero, and with absolute values of smaller
than 2 mm/km. Based on these empirical results, we use
Monte Carlo simulation to create a family of phase
screens ¢ with slope coefficients whose statistical
properties resemble the observations in the study by
Biggs et al. [2007]. The phase screens were added to
the deformation data and a nonlinear least-squares

inversion was used to estimate the Mogi model param-
eters from the distorted data. The inversion results are
shown in Table 7.2, indicating that the performance on
x; and AV estimation is poor. With this level (¢/) of
long-wavelength errors, the trade-off between depth
and volume change intensively hampers the parameter
estimation.

Thus, we reduce long wavelength noise level (e;) to a set
of smaller slope coefficients (within[-1, 1] mm/km) in both
directions, by assuming that most of the ramp signals can
be compensated using preprocessing procedures. The pos-
terior probability distributions obtained based on these
reduced long-wavelength noisc levels (ej) are shown in
Figure 7.5 and their statistics are listed in Table 7.2, The
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Figure 7.5 Probability distribution of estimated parameters when measurements have spatially local correlated errors €',

source depth and volume change still appear to be poorly
constrained in this case and the histogram of A ¥is bimodal.
The spatial standard deviation of ¢, and ¢ in the last case
study are within the same value range (less than 12 mm)
yielding similar uncertainties of the estimated Mogi param-
eters (e.g., |—o uncertainties of source horizontal location
is about 1-1.5 km). However, the posterior probability dis-
tributions, especially for x; and AV, are less normal for data
affected by long-wavelength errors. For x; and AV, the
mean values of the estimated source parameters differ from
their theoretical values but this difference remains statisti-
cally insignificant (at the 95% confidence level).

Overall, from our experiments, we can draw the follow-
ing conclusions for the dependence of the posterior prob-
abilities of the estimated Mogi source parameters on
different phase noise types:

1. Spatially correlated noise (¢ and €*) can significantly
impact the accuracy with which the parameters of a
volcanic source model can be determined. Strongest
impacts are observed for the accuracy of source depth
and volume change. In comparison, the influence of €" on
the estimated model parameters is small.

2. InSAR deformation maps containing ¢’ and ¢ errors
reduce our ability to determine source depth and volume
change parameters. Here, especially long wavelength €’
errors are harmful.

3. Reducing €' and ¢ errors prior to source model
inversion is highly recommended; alternatively, ¢' could
also be jointly modeled in the inversion.

7.3.3.3. Estimation Errors Related to the
Flat-Surface Assumption

Many volcanic inflation/deflation analytical source
models (including the Mogi model) apply a flat-surface
assumption, that is, they ignore the local topography of the
area of interest and assume that all measurement points
are located at the same level. Some researchers have sug-
gested that ignoring the local surface topography may

lead to biases in the estimated model parameters [Cayol
and Cornet, 1998; Williams and Wadge, 1998]. Correction
methods have been proposed that use simple first-order
approximations of the topography variation relative to
the reference frame or include a higher order correction
scheme [Williams and Wadge, 1998; 2000]. Simply speak-
ing, neglecting local surface topography will lead to
increased misfits in the parameter inversion.

To analyze the impact of ignoring surface topography,
we first compute and compare surface deformation sig-
nals caused by an inflating Mogi source for (1) a model
that uses the flat-surface assumption (1) and (2) a situa-
tion where the local topography is considered when cval-
uating the Mogi forward model in equation (7.2) (1,). The
topography of Westdahl volcano is used as an example in
this study and full coherence is assumed (Fig. 7.6). These
results indicate that ignoring local topography can lead to
significant overestimation of displacement, especially in
areas near the center of the volcano where effects caused
by ignoring topography in modeling are the largest. The
overestimation is caused by the fact that the distance
between the source location and the measurement points
is underestimated if surface topography is ignored. Errors
are generally smaller on the flank farther away from
source center. Generally, the effect of the flat-surface
assumption depends on the ratio of topographic height
to source depth. The deeper the source and, hence, the
smaller this ratio, the smaller the error introduced by
ignoring topography. Overall, comparing Figure 7.6(a)
and (b) suggests that residuals from (u, —u,) are a func-
tion of height and distance from the volcano source
center. For example, the highest peak that locates north
of the source center contains relatively small residual. It
also explains the widespread residual values with increas-
ing height as shown in Figure 7.6(c). Note that pixels with
larger errors are located around the volcano peak where
InSAR coherence is generally lost in real data applica-
tion, as discussed earlier.
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Figure 7.6 Predicted LOS displacements for flat-surface Mogi model (1) and elevation-varying Mogi model (u,):
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Table 7.3 Biased Estimation From Flat-Surface Assumption in Mogi Model

x; Lkm] Xy Lkm] Xy [km] AV x10° m?
Coherence everywhere 21.48 15.88 7.16 10.51
Decorrelation 21.14 15.92 6.45 10.10

Note: The true values of source parameters are x, =21 km, x, =16 km, x; =6 km, and AV=10 x10% m3,

To further investigate how the flat-surface assumption
affects the source parameter estimation process, we gen-
erate two LOS displacement maps for two different
coherence conditions, one where full coherence is con-
sidered and one where we assume decorrelation near the
summit area (see previous examples for the shape and
size of the decorrelated area). These LOS deformation
maps are prepared while fully considering surface
topography resulting in unbiased deformation maps u..
Finally, to solve for the volcano source parameters, we
make the typically used flat-surface assumption in the
inversion process. Shown in Table 7.3 are the estimated
source parameters compared to their true value (shown
in brackets). It can be seen that while biases are intro-
duced to all four model parameters, these biases are
most severe for the source depth (x;) and volume change
(AV) parameters. It can be seen that biases are larger if
coherence near the summit is preserved. Note that this
finding is realistic if the source is located roughly under-
neath the center of the volcano.

7.3.3.4. Joint Inversion with Descending and
Ascending Orbit Data

Previous studies have suggested that inversions for an
analytical deformation model can be greatly improved if
InSAR-based displacement measurements from different
geometrics are combined in a joint inversion [Biggs et al.,
2007; Lu and Dzurisin, 2014; Wright et al., 2004]. With
sufficient independent measurements, the 3-D deforma-
tion map can be reconstructed and then used to constrain

the inversion. Alternalively, the vertical and east-west
deformations can be derived from interferograms from
descending and ascending orbits [ Yun et al., 2006).

To discuss how joint inversion would impact the
Mogi source parameter estimation, we first perform the
nonlinear inversion and Monte Carlo method to com-
pute the posterior probability distribution of source
parameters based on synthetic datasets for descending
orbit-only (Fig. 7.2a) and ascending orbit-only (Fig. 7.7a)
configurations. Phase residuals ¢, the summation of all
InSAR error terms, are included with standard devia-
tion less than 9.5 mm and median values of 4.1 mm.
From these inversions, we find that descending-only
and ascending-only mecasurements produce source-
model estimates with similar error characteristics (see
Table 7.2 for descending-type and Table 7.4 for ascend-
ing-type results).

Finally, we add another model run where ascending
and descending data are used jointly in the Mogi source
parameter inversion, The results show a reduction in the
parameter’s uncertainties if data from both orbit direc-
tions are combined. This performance improvement is
particularly large for the horizontal location of the Mogi
source. However, when the coherence condition is poor,
the inversion results from single tracks and joint tracks
still have large uncertainties in the depth and volume
change parameters, and also the biases in their mean val-
ues remain (x; =6 km and AV =10x10°m*). Our results
furthermore show that the benefit of joint ascending and
descending data improves if coherence over the source
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Table 7.4 Standard Deviation (o) of Estimated Mogi Source Parameters With Single Track and Multitrack Deformation Maps

x; [km] x, [km] x4 [km] AV x10° m?
Joint Decorrelation mean 21.00 15.99 7.31 12.12
o 0.96 0.90 1.96 3.22
Coherence everywhere mean 21.00 16.00 6.08 10.30
Y o 0.33 0.31 0.41 1.58
Ascendin . mean 20.86 16.00 7.12 12.13
g PSCOMEIation o 1.24 1.18 2.10 4.00
mean 20.99 16.01 6.16 10.68
Coherence everywhere ” 0.44 0.44 0.68 260

Note: The true values of source parameters are x; =21 km, x5 =16 km, x} =6 km and AV=10 x10° m*.

can be maintained. In this case, biases in source depth
and volume change estimates can be reduced.

To further investigate the impact of observation geom-
etry on the separability of x; and AV we plot the correla-
tion between x; and AV in Figure 7.7b for different
combination of input measurements and coherence con-
ditions. It shows that, as a characteristic of the Mogi
model, the trade-off between x; and AV exists even if
observations with full coherence from multiple geometries
are available. The results suggest that (1) adding measure-
ments from different look directions will reduce the uncer-
tainties of estimated parameters; (2) if observations are
available near the summit (and, hence, above the source
location), the uncertainties of source parameters can be
reduced. Although we compare only the ascending-only
data with the joint-orbit data in this example, the result
should be similar if descending-only data were used as
long as they possess similar signal-to-noise level and
coherence coverage.

7.4. DISCUSSION ON IMPACTS OF OTHER
GEOPHYSICAL ASSUMPTIONS ON THE MOGI
SOURCE MODEL

Ideally, with accurate ground deformation measure-
ments and adequate inversion strategies, the Mogi source
parameters can be well constrained. However, to inter-
pret the estimated volcano source parameters under real-
istic conditions, the assumptions of the Mogi source
model need to be considered (i.e., impacts from the local
topography as discussed in the previous section), because
they can induce additional uncertainties in the estimated
source parameters.

First, the Mogi model has inability to separate pressure
change (AP) and volume change (A V). For instance, the
deformation pattern caused by smaller AP and larger
chamber volume (V¢) cannot be distinguished from that
by a combination of larger AP and smaller V. This is
because a point source can be formed by either volume
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change (AV)as M or by the pressure change (AP)
3 @&
s i as shown in equation (7.2), thus there is
G(1-v)
av =48 .
G

Second, the magma compressibility needs to be consid-
ered in understanding the computed volume change from
a Mogi model. Notice that the derived AV accounts for
only the change in the cavity size, which is actually the
superposition of injected/withdrawal magma volume
(AV ), magma compression (AV), and volume change of
the volatiles [Johnson, 1992]. Potentially additional gravi-
tational data and rock physics information would be pre-
ferred in order to assist inversion or the interpretation.

Another parameter contributing to the inferred volume
change is Poisson’s ratio v. The Mogi model uses an aver-
age value of 0.25 for v, however, the real value of v
depends on the petrological nature of the host-rock and
the average v determined from seismology is considered
to be between 0.265 and 0.30 for continental and oceanic
crusts [Christensen, 1996]. Varying v has significant
impact on the estimated AV: the estimated AV will
increase by 20% if vvis increased from 0.25 to 0.3 [e.g., Lu
et al., 2003]. Thus, it is necessary to consider the uncertainty
of volume change due to the usage of an averaged v=0.25
in the inversion,

There are also many other assumptions in analytical
volcano source models that we will not discuss here (e.g.,
anisotropic and non-homogeneous expansion environ-
ment, inelastic condition of rock [Masterlark, 2007]).
Hence, we should be aware of the uncertainties from the
assumptions used in Mogi model and try not to over-
interpret the inversion result.

7.5. CONCLUSION

This chapter presents a study on InSAR measurement
uncertainties and inherent impacts on estimated source-
model parameters for volcano deformation. The Mogi
model is used in the discussion given its simplicity and
wide use. Nonlinear least squares and Monte Carlo simu-
lations are used to generate the posterior probability dis-
tribution of source parameters. Through experiments
with simulated datasets, it suggests that spatially corre-
lated noise is critical to estimate the actual Mogi source
parameters and the associated parameter uncertainties.
The nonideal coherence condition and existence of spa-
tially correlated InSAR measurement errors emphasize
the difficulty in determining the optimal volume change
and source depth parameters and their associated uncer-
tainties. The surface topography can impact the estimate
of the Mogi source model, thus we suggest a Mogi model
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with the topography correction incorporated. Adding
deformation measurements from different viewing geom-
etry will better constrain the model inversion by reducing
uncertainties of estimated parameters.

To interpret the Mogi source parameters for volcano
studies in real volcanic conditions, it is important to keep
in mind that the computed volume change from geodetic
inversion can account for net change of the magma
reservoir conceptualized by the Mogi source. Therefore,
source model assumptions, for example, the magma
compressibility, choice of Poisson’s ratio, and volatile
concentration, also impact uncertainties of the estimated
source volume change. Potentially, together with geolog-
ical information or/and gravitational data, one can
better understand the magma changes in volcano
applications.

In this study, we have conducted the tests based on
nonlinear inversion with equal weight. However, in the
real data analysis, if an adequate InSAR noise model is
available, the input deformation maps can be weighted
differently so that measurements with large errors will
have less impact in the source-model inversion. The
InSAR measurements can be weighted using (1) a diago-
nal variance matrix [e.g., Wright et al., 2004] that only
considers the spatially uncorrelated errors, or (2) a more
sophisticaled [ull variancc-covariance matrix that is
formed by also considering the spatial correlation of
errors (e.g., building covariance structure by assuming
errors are stationary and isotropic [Lohman and Simons,
2005]). With a proper weighting scheme, we expect the
Mogi source parameter inversion can be better
constrained.
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