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S U M M A R Y
Long-term volcanic subsidence provides insight into intereruptive processes, which comprise
the longest portion of the eruptive cycle. Ground-based geodetic surveys of Medicine Lake
Volcano (MLV), northern CA, document subsidence at rates of ∼−10 mm yr−1 between 1954
and 2004. The long observation period plus the duration and stable magnitude of this signal
presents an ideal opportunity to study long-term volcanic deformation, but this first requires
accurate knowledge of the geometry and magnitude of the source. Best-fitting analytical source
models to past levelling and GPS data sets show conflicting source parameters—primarily the
model depth. To overcome this, we combine multiple tracks of InSAR data, each with a
different look angle, to improve upon the spatial resolution of ground-based measurements.
We compare the results from InSAR to those of past geodetic studies, extending the geodetic
record to 2011 and demonstrating that subsidence at MLV continues at ∼−10 mm yr−1. Using
geophysical inversions, we obtain the best-fitting analytical source model—a sill located at
9–10 km depth beneath the caldera. This model geometry is similar to those of past studies,
providing a good fit to the high spatial density of InSAR measurements, while accounting
for the high ratio of vertical to horizontal deformation derived from InSAR and recorded by
existing levelling and GPS data sets. We discuss possible causes of subsidence and show that
this model supports the hypothesis that deformation at MLV is driven by tectonic extension,
gravitational loading, plus a component of volume loss at depth, most likely due to cooling
and crystallization within the intrusive complex that underlies the edifice. Past InSAR surveys
at MLV, and throughout the Cascades, are of variable success due to dense vegetation, snow
cover and atmospheric artefacts. In this study, we demonstrate how InSAR may be successfully
used in this setting by applying a suite of multitemporal analysis methods that account for
atmospheric and orbital noise sources. These methods include: a stacking strategy based
upon the noise characteristics of each data set; pixelwise rate-map formation (π -RATE) and
persistent scatterer InSAR (StaMPS).

Key words: Satellite geodesy; Remote sensing of volcanoes; Volcano monitoring; North
America.

1 I N T RO D U C T I O N

Medicine Lake Volcano (MLV), northern California, is one of sev-
eral Cascade volcanoes known to have exhibited ground deforma-
tion in recent years. The first levelling measurements at MLV were
made in 1954 (Dzurisin et al. 1991, 2002) and, with the addition of
campaign GPS surveys (Poland et al. 2006), comprise a geodetic
record that spans 50 yr. Few volcanoes have such long geodetic
histories, but what is most unique about MLV is that deformation
has been recorded at a constant rate of ∼−10 mm yr−1 since mea-
surements began.

Past geodetic surveys of the volcano provide an extensive his-
tory of ground deformation, with levelling measurements provid-
ing good constraints upon the vertical component of deformation,
and GPS measurements best constraining horizontal displacements
(Poland et al. 2006). However, the temporal and spatial resolution
of measurements is limited (Fig. 1) and there are discrepancies be-
tween the best-fitting analytical models to these past data sets. In this
study, we use measurements from interferometric synthetic aperture
radar (InSAR), which are made at a much higher spatial density than
ground-based surveys. The side-looking nature of InSAR satellites
means that measurements contain a component of both horizontal

844 C© The Authors 2014. Published by Oxford University Press on behalf of The Royal Astronomical Society.

 at Southern M
ethodist U

niversity on Septem
ber 9, 2014

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

mailto:Amy.Parker@bristol.ac.uk
http://gji.oxfordjournals.org/


Multitemporal InSAR at medicine lake volcano 845

Figure 1. (a) Map of Medicine Lake Volcano (MLV) including main struc-
tural features and direction of tectonic extension (after Donnelly-Nolan et al.
(2008)), plus U.S. Geological Survey geodetic networks. The extent of MLV
lavas is shown by dotted black line and the summit caldera is shown by
dotted red line. Major holocene lava flows are shown by solid black lines
(Donnelly-Nolan 2010) . The site of the last eruption, 1 ka at Glass Mountain,
is labelled. These features are overlain on a 30 m SRTM digital elevation
model. Inset map shows the location of the main map in relation to the
other Cascade volcanoes. (b) Timeline showing the temporal resolution of
geodetic data sets at MLV. Levelling measurements are labelled with dates
and are from Dzurisin et al. (2002). GPS measurements are from Poland
et al. (2006).

and vertical motion in the line-of-sight (LOS) of the satellite. By
combining data acquired from multiple viewing geometries, InSAR
measurements have the potential to better constrain both horizontal
and vertical deformation fields at MLV (Wright et al. 2004b), in ad-
dition to providing measurements at a higher temporal and spatial
resolution than past ground-based studies.

InSAR is a frequently used volcano monitoring tool, providing
measurements of ground deformation in regions both with and with-
out other geodetic equipment (e.g. Sparks et al. 2012; Pyle et al.
2013; Lu & Dzurisin 2014). For regions that contain numerous vol-
canoes, such as the Andes or Central America, InSAR may be used
to carry out large-scale deformation surveys without the expense
or risks associated with deploying equipment on the ground (Biggs
et al. 2014). However, as is the case in many volcanic settings, the
application of InSAR at MLV and throughout the Cascades has been
limited by incoherence and noise.

In recent years, various multitemporal analysis methods have
been developed to improve the use of InSAR in challenging condi-
tions, and are now becoming widely used due to their accessibility
online. This includes those that assume the signal remains con-
stant over time such as: stacking (e.g. de Zeeuz-van Dalfsen et al.
2012), rate-map formation (e.g. poly-interferogram rate and time-
series estimator: π -RATE; Biggs et al. 2007; Elliott et al. 2008;

Wang et al. 2009, 2012) and persistent scatterer InSAR (Ferretti
et al. 2001; Hooper et al. 2007); and those designed to investigate
the temporal evolution of deformation, such as the small baseline
subset algorithm (Berardino et al. 2002). We test the application of
multitemporal analysis methods in the Cascades using multiple sets
of InSAR data acquired at MLV, where the apparent steady state
of ground deformation and abundance of geodetic data presents an
ideal opportunity to assess the application of techniques that assume
a linear rate of deformation.

The results of multitemporal InSAR analysis provide improved
constraints upon the deformation field at MLV. Comparing the re-
sults from InSAR to those of past geodetic studies, we extend the
geodetic record to 2011 and determine whether subsidence at MLV
continues at historical rates. The improved spatial resolution of
InSAR measurements is then used to constrain analytical models of
the source of deformation.

1.1 Tectonic and geological setting

Located east of the main Cascades axis on the Modoc Plateau,
MLV is considered to be a reararc volcano at the southern end of
the Cascade volcanic arc (Donnelly-Nolan et al. 2008, Fig. 1a). This
region marks the interaction between subduction along the Cascadia
subduction zone and extension of the Basin and Range province (e.g.
Hildreth 2007), both of which control the structure and behaviour of
MLV. The edifice marks a kink in regional fault orientations (Blakely
et al. 1997) and zones of crustal weakness including a lineament
of vents that extend SW to Mount Shasta; the NW extension of the
Walker Lane fault zone; and the southern extension of the Klamath
Graben (Donnelly-Nolan et al. 2008, Fig. 1a).

The total area covered by MLV lavas is >2000 km2—about
10 times the area of Mount St Helens (Donnelly-Nolan 1988)—and
the total erupted volume is estimated to be ∼600 km3 (Heiken 1978)
making MLV the largest volcano by volume in the Cascades (e.g.
Donnelly-Nolan 1988; Hildreth 2007). Despite its large volume,
MLV is a broad, inconspicuous, volcano with an E-W orientated,
7 × 12 km summit caldera (Fig. 1a).

Volcanism at MLV began about half a million years ago
(Donnelly-Nolan & Lanphere. 2005) and the volcano has one of
the highest Holocene eruption rates in the Cascades, with nine
eruptions having occurred in the last 5.2 ka (Donnelly-Nolan et al.
2008). Magmatic products show signatures of both subduction and
extension, with hydrous calcalkaline basalts and dry high-alumina
olivine tholeitte erupted close together in space and time (Donnelly-
Nolan 1988). The most recent eruption at MLV was ∼1 ka at Glass
Mountain on the eastern edge of the caldera (Fig. 1a).

1.2 Previous studies of ground deformation at MLV

The U.S. Geological Survey has made repeated measurements of
two geodetic networks covering MLV and neighbouring Mount
Shasta: a levelling line and a campaign GPS network (Fig. 1b).
The first levelling survey of the MLV/Mount Shasta region took
place in 1954. Smaller scale surveys were carried out in 1988 in
response to a small earthquake swarm, and in 1989–1990, the U.S.
Geological Survey Volcano Hazards Program remeasured the MLV
circuit (Dzurisin et al. 1991, 2002). These surveys revealed volcano
wide subsidence and an additional survey of the summit region
in 1999 confirmed subsidence at a rate of −8.6 ± 0.9 mm yr−1

(Dzurisin et al. 2002).
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Campaign GPS surveys of the volcano took place in 1996, 1999,
2003 and 2004 (Fig. 1b). The horizontal measurements provided
by these GPS campaigns have been essential in discriminating be-
tween possible source geometries, as they reveal that deformation at
MLV is almost all vertical, with very small horizontal displacements
(Poland et al. 2006).

Poland et al. (2006) present InSAR results in conjunction with
their GPS study, summing three temporally consecutive ERS-1/2
interferograms to produce a stack spanning 1993–2000. However,
Poland et al. (2006) found that ERS-1/2 data exhibit poor coherence
in the caldera region, and offer limited additional information to
GPS measurements.

2 I n S A R DATA A N D I N T E R F E RO G R A M
F O R M AT I O N

To address the application of InSAR at MLV, we use the significant
archive of InSAR data covering the volcano acquired between 1993
and 2011 by the European Space Agency C-band satellites ERS-1/2
and ENVISAT, plus L-band data from the JAXA satellite ALOS. In
total we use: 26 acquisitions from ERS-1/2 descending track 342; 32
acquisitions from ENVISAT ascending track 163; 32 acquisitions
from ENVISAT descending track 342 and 15 acquisitions from
ALOS ascending track 220 (Fig. 1b). Both C-band satellites have a
repeat interval of 35 d but offer variable coverage throughout their
operation time. ALOS data span 2007–2011 with a repeat time of
46 d, providing useful constraint on deformation in more recent
years.

Interferograms were processed using the JPL/Caltech ROI_PAC
software (Rosen et al. 2004), filtered using a power spectrum filter
(Goldstein & Werner 1998) and unwrapped using a branch cut algo-
rithm (Goldstein & Werner 1988). Topography was removed using a
30 m SRTM DEM (Farr & Kobrick 2000). We guide interferogram
formation using time versus perpendicular baseline plots to iden-
tify image pairs with short temporal and/or spatial baselines (see
Fig. A1 in the Supporting Information). To improve the coherence
of C-band interferograms we made alterations to the processing se-
quence including additional filtering steps, unwrapping manually
using bridges to connect isolated coherent patches and increasing
the number of looks (coarsening resolution to approx. 300 m, e.g.
Goldstein & Werner 1988; Jónsson et al. 2002). The final set of
C-band interferograms is produced by unwrapping the phase at 16
looks, allowing us to maximize coherence without over smoothing
the signal.

2.1 Coherence

The use of InSAR across the Cascades has been limited by inco-
herence. Coherence is quantified in terms of interferometric corre-
lation, γ , measured across a 3 × 3 pixel window. For stable pixels,
γ = 1, and for pixels that have independent backscattering phases,
γ = 0 (Seymour & Cumming 1994; Hanssen 2001). We use a thresh-
old of γ = 0.1, as this produces a smooth phase field in unwrapping
while maximizing the number of coherent pixels.

At MLV, incoherence is mostly caused by snow, and dense veg-
etation, which cause the properties of scatterers to vary over time
(temporal decorrelation). Geometrical decorrelation may also result
from steep topography, such as the caldera walls. Throughout all
data sets we observe good coherence in the arid region surround-
ing MLV. Pine trees across the flanks and caldera of the volcano
significantly reduce the coherence of C-Band data (e.g. Fig. B1 in

Figure 2. Summary of the coherence and noise of data sets used. (a) His-
togram showing the distribution of the orbital parameter a from eq. (2) for
each data set. ALOS data have a wider distribution of orbital parameters
than ENVISAT as seen by the larger standard deviation. (b–d) Trade-off
curves summarizing the coherence and atmospheric noise of each data set.
Marked thresholds are those used in noise-based stacking described in Sec-
tion 3.1.1. (b) Interferograms are ranked by the percentage of coherent pixels
in a 0.2◦ × 0.1◦ box surrounding the summit caldera. (c) Interferograms are
ranked by the r2 value found by plotting elevation versus phase of each
interferogram pixel. (d) Interferograms are ranked by the value of standard
deviation found using eq. (3).

Supporting Information), but are less detrimental to L-Band data,
as the longer radar wavelength is better able to penetrate vegetation
(Massonnet et al. 1996; Rosen et al. 1996; Ebmeier et al. 2013; Lu
& Dzurisin 2014). These regions of high elevations are also affected
by snow cover between November and May, which impacts all data
sets.

We quantitatively assess the coherence of each data set by cal-
culating the percentage of coherent pixels in a 0.2◦ × 0.1◦ box
surrounding the summit caldera. We then rank the interferograms
by coherence and plot a trade-off curve of interferogram num-
ber versus coherence (Fig. 2b). L-Band ALOS data exhibits the
most complete coherence (more than 90 per cent of interferograms
are >30 per cent coherent at the summit), whereas ENVISAT data
shows much poorer coherence, with fewer than 45 per cent of as-
cending track interferograms and 35 per cent of descending track
interferograms exceeding 30 per cent coherence at the summit. As
was the case for the study of Poland et al. (2006), we find that the
coherence of ERS-1/2 data at MLV is extremely poor, with fewer
than 30 per cent of interferograms exceeding 25 per cent coherence
at the summit. In addition to the causes of geometrical and temporal
decorrelation highlighted above, such poor coherence can also be
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Table 1. Data sets used in this study and associated noise properties described in Section 2. Top: individual interferograms. Bottom: results
of π -RATE.

Data set No. of scenes Repeat time Coherencea Orbital parametersb Covar. Functionc r2 d

a b c σ̃ α̃

ENVISAT Asc. 32 35 d 41 per cent 0.29 0.21 2.8 × 104 7.3 16 0.19
ENVISAT Desc. 32 35 d 30 per cent 0.26 0.24 2.3 × 104 5.8 8.3 0.055
ALOS Asc. 15 46 d 90 per cent 4.38 1.88 2.5 × 105 10.8 11.2 0.058

ENVISAT Asc. 100 per cent 0.0025 −0.0007 −0.97 2.96 2.25 2.5 × 10−4

ENVISAT Desc. 62 per cent 0.0032 −0.0013 −0.81 3.0 6.46 160 × 10−4

ALOS Asc. 93 per cent 0.0003 0.0011 −1.23 6.8 1.65 4.7 × 10−4

aPercentage of coherent pixels within a 0.2◦ × 0.1◦ box surrounding the summit caldera.
bStandard deviations of the parameters a, b and c defined in eq. (2) describing the orbital contribution to phase.
cMedian values of σ and α from eq. (3) describing spatial correlation of the data.
dMean r2 value describing the correlation between pixel phase and elevation.

attributed to instrument limitations (e.g. Zebker & Villasenor 1992;
Hanssen 2001). As the operation time of ERS-1/2 is also covered
by levelling and GPS surveys we chose to discard this data set.

2.2 Sources of noise

Interferometric phase is not just a product of ground deformation
but also contains several noise terms that compromise accuracy. The
LOS displacement (dLOS) may be split into (i) the phase contribution
from the difference in ground deformation between acquisitions t1

and t2 (�φdef ), (ii) the difference in the orbital contribution between
acquisitions t1 and t2 (�φorb)(see Section 2.2.1), (iii) the difference
in the atmospheric delay between acquisitions t1 and t2 (�φatm) (see
Section 2.2.2) and (iv) the phase contribution due to other noise
(φerror):

dLOS = −4π

λ
(�φdef + �φorb + �φatm + φerror). (1)

In the following, we analyse the orbital and atmospheric contribu-
tions to each data set, with parameters summarized in Table 1.

2.2.1 Orbital errors

Each satellite acquisition is made from a different location above the
ground due to forces that act upon the satellite trajectory. Precise
orbits are used to determine the exact separation of the satellite
orbits, but not all forces can be fully modelled. Our knowledge
of the orbital parameters is therefore imperfect, resulting in a long
wavelength orbital error that remains in the interferogram (Fig. B1 in
the Supporting Information; Zebker et al. 1994). As the unmodelled
accelerations are small, the error changes slowly in the along track
direction (Hanssen 2001) and most authors approximate the orbital
contribution using a first- or second-order 2-D polynomial (Biggs
et al. 2007; Gourmelen et al. 2010). Accordingly, we investigate the
orbital phase contribution to each data set by finding the perturbation
to the orbital parameters which best matches the observed phase
using a linear empirical approximation of the form:

z = ax + by + c, (2)

where [x,y] are the pixel coordinates, a and b are gradient param-
eters, and c is the intercept. We mask the edifice and solve for a,
b and c for each interferogram using a linear least squares inver-
sion. For all data sets we find that both x- and y-gradients have a
roughly normal distribution centred on zero (Fig. 2a). Using the
standard deviation of the orbital parameters we find that the or-
bital contributions are greater for ALOS data than for ENVISAT

data (Fig. 2a). This is in agreement with the large perpendicular
baselines observed between consecutive ALOS acquisitions when
constructing time versus baseline plots, as this indicates a large
spatial separation between the satellite orbits (see Fig. A1 in the
Supporting Information).

2.2.2 Atmospheric errors

The atmospheric contribution to the phase results from changes in
pressure, temperature and water vapour between acquisitions, as
each of these factors controls the effective path length between the
satellite and the ground. The most variable of these factors is tro-
pospheric water vapour—vertically stratified water vapour causes a
phase contribution that tends to correlate with topography, whereas
turbulent water vapour causes 3-D heterogeneities in refractivity that
manifest as spatially correlated patterns in interferograms (Hanssen
2001). From visual inspection of interferograms at MLV, we find
that the main source of atmospheric noise in this setting is tur-
bulent water vapour across the Modoc Plateau, resulting in phase
heterogeneities that do not correlate with topography (Fig. B1 in
the Supporting Information).

We investigate the effects of water vapour stratification by look-
ing at the relation between elevation and phase in each data set. We
begin by removing an orbital phase ramp (as described in Section
2.2.1), masking the edifice and identifying pixels that are coherent
in all interferograms. We then use an SRTM 30 m DEM to plot the
elevation versus phase of each pixel in the interferogram. We then
perform a linear regression to obtain the r2 value, using this as a mea-
sure of the correlation between elevation and phase—interferograms
with r2 > 0.2 are deemed to be dominated by atmospheric noise.
Using the values of r2, we rank the interferograms in each data set
and plot a trade-off curve of interferogram number versus r2. As
MLV is of relatively low relief compared to the surrounding basin
(∼1300 m), we find that most interferograms do not show a strong
relation between elevation and phase, and have r2 < 0.2 (Fig. 2c).

In reality, interferograms are highly spatially correlated (Hanssen
2001; Jónsson et al. 2002; Lohman & Simons 2005), and to account
for spatial correlation of the signal, we use an exponentially decay-
ing form of covariance function to approximate the overall atmo-
spheric phase contribution to each interferogram (Hanssen 2001).
We assume that the statistical properties of the atmosphere are radi-
ally symmetric (Hanssen 2001) and use a 1-D covariance function
of the form:

c jk = σ 2e(−d jkα), (3)
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Figure 3. Results of multitemporal InSAR analysis using ENVISAT ascending, ENVISAT descending and ALOS ascending data sets and three methods
(noise-based stacking, π -RATE and StaMPS). Each result is labelled with number of interferograms used and dates spanned. Outlined in black are MLV lava
flows (solid lines) and caldera (dashed line) as in Fig. 1. Squares and triangles indicate the colour scale used.

where c jk is the covariance between pixels j and k, σ 2 is the variance,
djk is the distance between the pixels and α is the inverse of the e-
folding wavelength—a measure of the spatial correlation of the
signal. We observe median values of σ = 7.3 mm and α = 16.0 km
for ENVISAT ascending data, σ = 5.8 mm and α = 8.3 km for
ENVISAT descending data (Fig. 3) and σ = 10.8 mm and α =
11.2 km for ALOS ascending data, all of which are comparable

to the studies of Biggs et al. (2007) in Alaska (σ̃ = 7.5 mm and
α̃ = 12.3 km) and Lyons & Sandwell (2003) in California (σ̃ =
8.13 mm).

We use the values of σ 2 to rank the interferograms in each data
set by phase standard deviation (σ ), plotting a trade-off curve of in-
terferogram number versus standard deviation. We find that all data
sets have a similar distribution of standard deviation: the majority
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of interferograms have values <10 mm, with standard deviation in-
creasing linearly until the kink in the trade-off curve, at which point
we reach interferograms with much higher levels of noise (Fig. 2d).

Both water vapour stratification and turbulence are more sig-
nificant in regions of significant topography (e.g. Chaussard et al.
2013). This is shown by Ebmeier et al. (2013), who derive a relation
between the relief of the edifice and rms variation in range change
across the summit, using examples from volcanoes in Central Amer-
ica. According to this relation, the relief of MLV compared to the
surrounding plateau (∼1300 m) would result in ∼35 mm rms range
change variation. This is ∼3.5 times larger than the amount of de-
formation we expect to observe each year at the rates obtained from
levelling and GPS, emphasising the importance of using multitem-
poral methods in this setting.

Numerous studies have developed techniques for reducing the
effects of atmospheric noise including: calibration of the signal
with an external data source such as GPS (e.g. Li et al. 2006); the
use of weather models (e.g. Foster et al. 2006; Doin et al. 2009;
Wadge et al. 2010) and those based upon the statistical informa-
tion contained within the interferograms themselves, such as the
correlation of phase with topography (e.g. Elliott et al. 2008). We
take this statistical approach and use three techniques each of which
employs statistical information within the interferograms to reduce
the effects of atmospheric noise.

3 I n S A R M E T H O D S

Various analysis techniques have been developed to improve the
coherence and signal-to-noise ratio of InSAR data in problematic
settings. Past geodetic studies at MLV suggest that deformation is
occurring at a constant rate (Dzurisin et al. 2002), and as such
we test three techniques that each assume the deformation rate is
linear: stacking, rate-map formation (π -RATE; Biggs et al. 2007)
and the Stanford method for persistent scatterers (StaMPS; Hooper
et al. 2007). Our choice of these techniques is also motivated by
the accessibility of the software, as both π -RATE and StaMPS are
available online with an element of user support. Each technique has
a different approach to combining interferograms and minimizing
the effects of noise; by identifying common features between the
results we are able to better determine the extent and magnitude of
the deformation field.

3.1 Stacking

A common approach to increasing the signal-to-noise ratio of an
InSAR data set is combining multiple interferograms by stacking.
This technique has been used elsewhere in the Cascades at Mount
St Helens, WA (Poland & Lu 2008), Three Sisters, OR (Riddick
& Schmidt 2011) and previously at MLV (Poland et al. 2006).
This simple method assumes that the signal within the interfero-
grams accumulates at a constant rate while the noise is random. By
adding together N interferograms of equal duration, the signal has a
magnitude N times bigger than that of an individual interferogram,
whereas the noise is only

√
N times larger (Biggs et al. 2007).

Stacking methods can often be further improved by stacking
chains of interferograms (e.g. Johanson & Burgmann 2005; Biggs
et al. 2007), where the slave image of one interferogram is the
master image of the next. In this approach, the noise contribution
from the slave image of the first interferogram will be cancelled
when it is used as the master image of the second interferogram,
until the remaining noise contribution is due only to the first and

last acquisitions within the chain. This is beneficial in cases when
short duration interferograms are significantly more coherent than
longer duration interferograms. This is not the case for the data sets
used here, and we find that chain stacking introduces many small
unwrapping errors that are of the same magnitude as the subsidence
signal across the caldera or, in the case of ALOS, errors due to large
perpendicular baselines between consecutive satellite acquisitions.

3.1.1 Noise-based data selection for stacking

Due to the extent of incoherence and phase heterogeneities caused
by atmospheric errors, we adopt a stacking strategy designed to
optimize the trade-off between the number of interferograms in
each stack and the levels of atmospheric noise. This approach is
based upon the analysis of coherence and noise sources presented
in Section 2.

The main limitation of stacking is that it is only applicable to
pixels that are coherent in all interferograms. To combat this we
remove any interferograms with <80 per cent coherent pixels in a
0.2◦ × 0.1◦ box surrounding the summit caldera. This coherence
threshold is selected through a process of trial and error. We begin
with a lower value, resulting in poor coherence when we sum all
remaining interferograms, and increase this value until we achieve
a minimum of ∼30 per cent coherence when summing together all
remaining interferograms. The result of this step is a smaller but
more coherent data set (Fig. 2b).

As the primary cause of atmospheric errors at MLV is atmo-
spheric turbulence, the next step is to use phase variance analysis
to remove interferograms that are dominated by large magnitude
phase hetrogeneities. When ranking the interferograms by phase
standard deviation in Section 2.2.2, we identified a trade-off be-
tween the number of interferograms and the maximum standard
deviation: including many interferograms increases the maximum
standard deviation, whereas including few interferograms reduces
the maximum standard deviation but also reduces the temporal cov-
erage of the stack (Fig. 2d). We select a threshold standard deviation
to optimize the stack using linear regression to identify the kink in
the trade-off curve of each data set. We perform separate linear
regressions to the first and last 20 per cent of data points in each
data set and use the intersection of these linear regressions to mark
a standard deviation threshold. Applying this method to each data
set we find that a value of 10 mm provides a good fit to both ALOS
and ENVISAT data (Fig. 2d).

The final stage of data selection is designed to minimize the de-
pendence of phase upon topography caused by atmospheric stratifi-
cation. As discussed previously, most interferograms do not exhibit
a strong correlation between elevation and phase (r2 > 0.2; Fig. 2c).
We therefore set a threshold of r2 = 0.2, only removing a small set
of interferograms with larger r2 values.

The final stack for each data set is produced by referencing in-
terferograms to a far field region to account for different starting
points used in phase unwrapping. We sum the phase at each pixel,
divide by the total duration to calculate the rate at each pixel, and
finally remove a linear phase ramp to account for the orbital phase
contribution. For robustness we use a bootstrap approach to ensure
that no single interferogram dominates the final stack. To do this we
sequentially remove interferograms from the stack, checking that
the maximum LOS displacement remains within 1.5σ of that for
the final stack.

In addition to stacking pixels that are coherent in all interfero-
grams, we also test stacks of pixels that are coherent in a certain
percentage of interferograms. However, testing different thresholds,
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we find that this approach is not robust and results in noisier pixel
values that are sensitive to the inclusion or exclusion of single
interferograms.

3.2 π-RATE

Whereas the stacking methods described above only retain infor-
mation from pixels that are coherent in all interferograms, π -RATE
employs a pixelwise approach to calculate deformation rates at pix-
els that are coherent in different numbers of interferograms. This
ensures that useful information about the magnitude and spatial
extent of the deformation field is not lost. This advanced stacking
approach originates from the multi-interferogram method proposed
by Biggs et al. (2007), with further development by Elliott et al.
(2008) and Wang et al. (2009). The technique has been very suc-
cessful in measuring fault related processes in regions such as Tibet
(e.g. Wang et al. 2009; Wang & Wright 2012; Garthwaite et al.
2013), but has not previously been applied to volcanic data sets.

Unlike the stacking strategy outlined above, π -RATE corrects
for sources of noise using networked corrections rather than re-
moving noisy interferograms. In this approach, constraints from
many interferograms are used to calculate the noise contribution at
each acquisition rather than at each interferogram (Biggs et al. 2007;
Wang et al. 2009). Networked corrections are used to correct orbital
errors and topographically correlated atmospheric errors, which are
assumed to vary linearly with height as a first-order approximation
(Elliott et al. 2008).

π -RATE formally accounts for the error at each pixel using an ap-
propriate variance–covariance matrix, 	. This contains estimates of
spatially correlated noise from the covariance function described in
eq. (3), while considering the temporal covariance between interfer-
ograms arising from common master or slave dates. The final stack
is produced by solving for the best-fitting LOS displacement rate at
each pixel, rLOS using a pixelwise linear least squares inversion of
the form:

	−1T = 	−1rLOS P, (4)

where T is the duration of each interferogram coherent at that pixel
and P is the phase of each interferogram. To improve computation
time we downsample the interferograms, testing downsampling fac-
tors between 1 and 10. We choose a downsampling factor of 5, opti-
mizing the trade-off between the spatial resolution and computation
time. We then solve for all pixels that are coherent in at least two
interferograms to maximize the coherence of the signal.

3.3 Persistent scatterer InSAR

The final technique we use is persistent scatterer InSAR (PSInSAR).
PSInSAR methods overcome incoherence by identifying persistent
scatterer pixels using amplitude and phase stability characteristics
(Ferretti et al. 2001). Within an interferogram, the phase of each
pixel is dependent upon the phase returns from all scatterers in the
corresponding element on the ground. Some pixels contain stable
scatterers whose phase return remains constant over time despite
changes in surrounding scatterers. These persistent scatterers dom-
inate the phase return of the pixel and act to reduce the amplitude
and phase variance (Hooper et al. 2007).

We use StaMPS developed by Hooper et al. (2007), which has
proven beneficial in other volcanic settings, such as Three Sisters,
OR (Riddick et al. 2012), plus several volcanoes in Iceland (e.g.
Hooper et al. 2009; Ofeigsson et al. 2011) and Mexico (Pinel et al.

2011), all of which suffer incoherence due to steep topography,
snow cover and vegetation. Like π -RATE, this method includes
a correction for atmospheric and orbital noise based upon spatial
correlation characteristics of the signal (see Hooper et al. 2007,
for details). We apply StaMPS to all available acquisitions from
the ENVISAT ascending, ENVISAT descending and ALOS data
sets. Using information from the California Department of Water
Resources, we also investigate the effects of snow on PSInSAR by
applying StaMPS to a subset of SAR scenes that were acquired
during snow-free months. Although this greatly increases the num-
ber of PS pixels, the reduced number of SAR scenes compromises
estimations of noise terms and we do not take this approach further.

4 R E S U LT S O F M U LT I T E M P O R A L
I n S A R A NA LY S I S T E C H N I Q U E S

The results from all data sets and analysis methods suggest that
ground deformation at MLV continues in the 21st century. All
data sets show subsidence of a similar region centred on the
summit caldera (Fig. 3), with maximum LOS displacements of
∼−13 mm yr−1 for ascending data sets and ∼−7 mm yr−1 for
descending data sets. The methods are of variable degrees of suc-
cess, with π -RATE offering significant improvements to coherence
compared to the InSAR results from Poland et al. (2006). In this
section, we assess the results from each method in terms of the
improvement in coherence and the reduction of noise sources. To
investigate the magnitude and spatial extent of subsidence recorded
by each data set, we take displacement profiles that are coincident
with the short and long axes of the caldera (N–S and E–W, respec-
tively; Fig. 4). As was the case for rate-maps, profiles demonstrate
broad agreement in the spatial extent of subsidence. The profiles
highlight some variability in the magnitude of deformation when
using different InSAR analysis techniques, which we attribute to
different interferograms being used by each method, but overall the
magnitude of deformation is consistent between the three data sets.

4.1 Stacking

Within the stacking results for ENVISAT ascending data, the re-
gion SW of the volcano is largely incoherent (Fig. 3). Where there
is coherence, displacement profiles show maximum LOS subsi-
dence rates of ∼−13 mm yr−1. For ALOS ascending data, which
exhibit good coherence at MLV, stacking is more successful, and
profiles show maximum deformation rates of ∼−9 mm yr−1 (Fig. 4).
However, subsidence of ∼−5 mm yr−1 is also observed across the
highland between MLV and Mount Shasta (Fig. 3), suggesting that
there is a remaining contribution from atmospheric stratification.
For profiles of both ENVISAT and ALOS data, we observe other
phase signals outside of the caldera, but these are not consistent
between data sets and are considered to be due to noise.

Stacks of ENVISAT descending data show significant variability.
Using the bootstrap test described in Section 3.1.1, we find that in-
dividual interferograms change the LOS deformation rate by >2σ ,
as many interferograms exhibit extensive phase heterogeneities, al-
though the overall variance of the data set is similar to that for
ascending data (Fig. 2d). The edifice is also surrounded by larger
regions of incoherence, and this causes many unwrapping errors in
almost all scenes. We therefore find that stacking is not a robust
method for dealing with this data set.
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Figure 4. Displacement profiles for multitemporal InSAR analysis taken across the long and short axes of the caldera (E–W and N–S directions, respectively).
The extent of the caldera is marked on all profiles with dashed grey lines. Error bounds on the results of π -RATE are calculated using the variance–covariance
matrix in eq. (4). There is good agreement in the spatial extent of the signal between different InSAR analysis techniques but for ENVISAT data we observe
variations in the magnitude of the signal due to different interferograms being used for each method.

4.2 π-RATE

The results of π -RATE for ENVISAT ascending data show almost
continuous coherence about the caldera, a significant improvement
upon the results of stacking. The magnitude of the deformation
signal is reduced by a factor of ∼1.5 compared to stacking, which we
attribute to a reduction in the effects of atmospheric stratification.
However, we do observe anomalous phase signals to the north–
west of the caldera which do not correlate with the results of other
data sets (Fig. 3). For ALOS ascending data, displacement profiles
taken across the results of π -RATE are of comparable magnitude to
those for stacking and show similar distributions of displacements
(Fig. 4). π -RATE is a much more successful method for ENVISAT
descending data than stacking, reducing the effects of atmospheric
turbulence and removing unwrapping errors by summing round
loops of interferograms and masking any residuals (Biggs et al.
2007). Although the results for ENVISAT descending data remain
more incoherent and noisy than those for both ascending data sets,

displacement profiles show a clear subsidence signal with maximum
LOS displacements of ∼−7 mm yr−1, which is in agreement with
the results of ascending data (Fig. 4).

4.3 Persistent scatterer InSAR

Applying StaMPS to ENVISAT data significantly improves coher-
ence compared to the raw interferograms, although coherence is
not as continuous as for the results of π -RATE. Most PS pixels in
the vicinity of the caldera are coincident with large surficial lava
flows (Fig. 3), which helps to constrain the extent of the deforma-
tion field. Lava flows with fewer PS pixels are sparsely vegetated.
From reconnaissance field analysis we find that another possible
control upon PS density at lava flows is modal block size—at Burnt
Lava Flow, directly south of the caldera, we found that regions with
fewer PS corresponded to a smaller modal block size (20–50 cm)
compared to the average block size of the flow (50–100 cm). Other
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PS pixels are coincident with road intersections, smaller outcrops
and clearings within the forest. These findings are similar to those
of Riddick et al. (2012) in their study of PS in central Oregon,
although a possible relation between PS density and block size has
not previously been noted.

The deformation field obtained with StaMPS for ENVISAT as-
cending data has a similar extent to that observed with stacking
and π -RATE: deformation is focussed on the caldera, between lava
flows to the north, east, south and west, with maximum displace-
ments of ∼−8 mm yr−1 at Medicine Lake Glass Flow in the NW
of the caldera (Fig. 3). However, the anomalous phase signals ob-
served north–west of the caldera in the results of π -RATE have
been reduced. Similar results are observed for ENVISAT descend-
ing data. Deformation is again constrained within a region bound by
lava flows to the north, east, south and west of the caldera, however
displacements are of smaller magnitude (up to ∼−5 mm yr−1) and
there is still some evidence of atmospheric turbulence north of the
volcano (Fig. 3). Unlike ENVISAT data, ALOS ascending data are
highly coherent at MLV and, due to the success of both stacking and
π -RATE, we do not include the results of StaMPS analysis for this
data set.

4.4 Comparison to past geodetic studies

Past geodetic studies at MLV show that the rate of subsidence re-
mained constant (to within detection limits) between 1954 and 2004
(Dzurisin et al. 2002; Poland et al. 2006). To assess whether this
observation can be extended to 2011, we compare the most coherent
set of InSAR results (those produced using π -RATE) to the results
of levelling from Dzurisin et al. (2002).

The section of the levelling line that covers MLV caldera extends
northwards from Burnt Lava Flow south of the caldera, to the centre
of the caldera, before continuing west across the long-axis of the
caldera (see map in Fig. 5). We select pixels within 1500 m of each
levelling station (ensuring that we use the values from >10 pixels)
and calculate the average deformation rate before referencing to
pixels coincident with the reference levelling station. We assume
the deformation is all vertical and, as InSAR measurements are
made oblique to vertical, project the levelling measurements into
the LOS using the satellite look vector as defined in Wright et al.
(2004b). Error bars on InSAR measurements are then 1σ calculated
by propagating the error values at each pixel, which are obtained
using the formal error estimation of π -RATE (eq. 4).

Both ENVISAT data sets are in agreement with the results of past
levelling surveys, with maximum displacements coincident with the
caldera (Fig. 5). ALOS ascending data are also in close agreement
with ENVISAT on the S–N portion of the line. On the E–W por-
tion of the line there is an increase in the magnitude of the signal
recorded by ALOS, which we attribute to under correction of resid-
ual atmospheric artefacts across the highland between MLV and
Mount Shasta (Fig. 5). Overall, we find no evidence of a decrease in
the rate of subsidence since 1954, as the results of InSAR analysis
fall within error of levelling measurements. This suggests that the
constant rate of subsidence detected by Dzurisin et al. (2002) con-
tinued until at least the last ALOS acquisition in 2011. Deformation
at MLV has therefore been sustained at a steady rate for over 60 yr.

4.5 Horizontal and vertical displacements

The side-looking nature of InSAR satellites means that measure-
ments contain a component of both horizontal and vertical motion

Figure 5. Comparison between the results of levelling from Dzurisin et al.
(2002) and InSAR. Profiles are offset to aid viewing. The section of the
levelling line used is shown by the red line in the small map, where black
lines show MLV caldera and lavas as in Fig. 1. The shaded grey region of the
profiles corresponds to the extent of the caldera. We average pixels within
1500 m of each levelling station and reference to pixels at the reference
levelling station. Errorbars on InSAR measurement are 1σ and are calculated
by propagating the error on individual pixels from the variance–covariance
matrix in eq. (4).

in the LOS of the satellite (for details see, e.g. Rosen et al. 2000).
We can therefore use multiple tracks of data, each of which has a
different satellite look direction, to decompose the LOS motion into
horizontal and vertical components (e.g. Wright et al. 2004b; Biggs
et al. 2009b). This allows us to better constrain the 3-D deforma-
tion field at MLV, in addition to providing measurements at a higher
temporal and spatial resolution than past geodetic campaigns.

Using the results for ENVISAT ascending and ENVISAT de-
scending data, we solve for the EW and vertical components of
motion only, u = (uE, uZ)T, as InSAR measurements are less sen-
sitive to NS motion. We use the equation R = Su, where R is a
vector of the LOS displacements for each data set and S is a 2 × 2
matrix containing the unit satellite look vectors for each data set
(Wright et al. 2004b). We solve for u at each pixel, weighting the
inversion using a covariance matrix for errors in the observed range
change 	R (Wright et al. 2004b). 	R contains values based upon
covariance analysis from eq. (3), and is used to find the covariance
matrix for the estimated vector components, 	u.

The relative magnitudes of the resulting horizontal and vertical
displacement fields are in agreement with measurements from lev-
elling and GPS (Fig. 6). GPS surveys of MLV reveal the high ratio
of vertical to horizontal displacements (Poland et al. 2006) and
we find that this is confirmed by InSAR data, with InSAR derived
horizontal displacements of ∼3 mm yr−1, compared to vertical dis-
placements of up to ∼−8 mm yr−1 (Fig. 6). Both horizontal and
vertical deformation fields are broadly symmetrical and centred on
the caldera centre, with vertical deformation extending for ∼20 km
(Fig. 6).
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Figure 6. Left: Comparison between the vertical and horizontal components of motion derived from our InSAR study and from past geodetic studies. Levelling
measurements are from (Dzurisin et al. 2002) and GPS measurements are from (Poland et al. 2006). InSAR measurements are from the E–W profiles marked
on the rate-maps. Errorbars on InSAR data are found using the covariance matrix 	u described in Section 4.5. The solid black line shows model displacements
for the best-fitting analytical model to InSAR data described in Section 5.3. Right: maps of vertical and horizontal displacements found by inverting multiple
tracks of InSAR data as described in Section 4.5. The caldera is marked by a dashed black line.

5 M O D E L L I N G : E S T I M AT E S
O F S O U RC E G E O M E T RY
A N D V O LU M E C H A N G E

The past studies of Dzurisin et al. (2002) and Poland et al. (2006)
consider possible sources of subsidence at MLV. Both authors
acknowledge the tectonic contribution due to extension of the Basin
and Range province, plus a component of surface loading due to the
large volume of emplaced material. However, they also recognize
that, to fully explain the deformation field, a component of vol-
ume loss at depth is required. The authors model this by first using
idealized, elastic models—a well established and widely used ap-
proach to obtain information about source geometries from geodetic
data (e.g. Dzurisin 2007; Segall 2010). As mentioned previously,
there are discrepancies between the best-fitting source models to
each data set, as levelling and GPS measurements are sensitive
to different components of the deformation field. Both data sets
favour a sill rather than a point source, but levelling data prefer a
smaller (10.3 × 4.4 km), deeper (11 km) source that strikes NE–
SW (221◦) (Dzurisin et al. 2002), whereas GPS data prefer a larger
(18.2 × 9.2 km), shallower (5 km) source that strikes E–W (267◦)
(Poland et al. 2006; Table 2).

We address analytical models of the deformation source using
the improved spatial resolution of all available InSAR measure-
ments. As the problem is highly non-linear, we use a Monte Carlo
type simulated annealing algorithm as an optimization tool to min-
imize the misfit function (Amelung & Bell 2003). This combines
the efficiency of a derivative-based search algorithm while testing
a wide range of source parameters to avoid local minima. We si-
multaneously solve for all data sets, reducing the number of data
points by downsampling (e.g. Biggs et al. 2010; Hamling et al.
2014, and others). We downsample to a regular grid rather than by
quadtree partitioning, as regions of high phase gradients are asso-
ciated with atmospheric noise in addition to ground deformation.
As source models of this nature are inherently non-unique, we in-
vestigate the trade-offs between model parameters and the bounds
upon each model parameter using a Monte Carlo algorithm (e.g.
Wright et al. 2004a; Biggs et al. 2009a). This is done by using the
parametrized values of the covariance function (eq. 3) to create 100
sets of synthetic atmospheric noise for each data set, which are then
added to the results selected in Section 5.1 before rerunning the
same inversion procedure. The best-fitting parameters and 1σ error
bounds from Monte Carlo analysis are summarized in Table 2, and
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Table 2. Summary of analytical source models from this study and past geodetic studies. Top: best-fitting point source
model. Bottom: best-fitting rectangular sill model. Upper and lower bounds on source parameters to InSAR data are
1σ from Monte Carlo error analysis described in Section 5.

Data Longitude Latitude Depth Length Width Strike Opening � Volume Misfita

(◦W) (◦N) (km) (km) (km) (◦) (m yr−1) (km3 yr−1)

Levelling1 121.580 41.590 10 — — — — −0.0031 18.31
GPS2 121.590 41.580 6 — — — — −0.0010 1.24
InSAR 121.562 41.573 5.8 — — — — −0.00095 5.33 mm

121.569 41.576 6.2 −0.0013

Levelling1 121.559 41.566 11 10.3 4.4 221 −0.0446 −0.0020 18.33
121.410 41.637

GPS2 121.499 41.623 5 18.2 9.2 267 −0.0151 −0.0025 0.96
121.718 41.616

InSAR 121.566 41.576 9.1 1.0b 1.0b 245 −1.10 −0.0011 5.31 mm
121.572 41.580 9.8 255 −1.33 −0.0013

aMisfit values are not comparable between studies but lower values indicates a better model fit. Misfit for this study is
the total rms error between the model and each data set.
bParameter value is fixed in the inversion of InSAR data.
Parameters and bounds are from the following references: 1Dzurisin et al. (2002). 2Poland et al. (2006).

histograms showing the distribution of the model parameters are
shown in Fig. C1 in the Supporting Information. Cayol & Cornet
(1998) discuss the bias introduced in analytical modelling by steep
topography, but we choose not to account for the effects of topog-
raphy as MLV has low relief compared to the surrounding plateau
and topographic slopes do not exceed 2–3◦.

5.1 Selection of InSAR data for use in modelling

We use all data sets to model the deformation at MLV, selecting the
most successful multitemporal InSAR approach in each case. For
ENVISAT ascending data, we use the results of StaMPS, as this of-
fers the best deformation signal, avoiding anomalous phase signals
to the north-west of the volcano that are not observed in other data
sets (Fig. 3). For ENVISAT descending data, we select the results
of π -RATE, as the improvement to coherence is greater than that
with StaMPS, as is the reduction of atmospheric turbulence (Fig. 3).
Both stacking and π -RATE offer comparable results for ALOS data,
but the application of π -RATE has reduced the magnitude of to-
pographically correlated atmospheric delays observed near Mount
Shasta (Fig. 3), and we use this as the final input for modelling.

5.2 Point source

We begin by solving for the simplest point source geometry
parametrized in terms of: [x,y] location, depth and volume change
(Mogi 1958; Dzurisin et al. 2002; Poland et al. 2006). We allow
the location to vary over the extent of the caldera and the depth to
vary between 2 and 20 km. The best-fitting source parameters are
similar to those found by Dzurisin et al. (2002) for levelling data
and Poland et al. (2006) for GPS data (Table 2), with a source depth
of 6 km and rate of volume change of −0.0012 km3 yr−1. Using
Monte Carlo error analysis we find that the location of the source
is well constrained SE of the caldera centre (Fig. 7a). We also iden-
tify a strong trade-off between depth and source strength as smaller
volume changes at shallow depths produce a similar magnitude of
deformation as larger volume changes at greater depths (Fig. 7b).
Although we do not expect a point source to be the most representa-
tive source geometry (Dzurisin et al. 2002; Poland et al. 2006), the
results of this modelling provide good constraints upon the location
of the deformation source at MLV.

5.3 Sills

We test more complicated source geometries that are representa-
tive of sill-like intrusions, using an approximation of a horizontal,
rectangular dislocation (Okada 1985) [the preferred model for both
levelling (Dzurisin et al. 2002) and GPS data (Poland et al. 2006)].
The source is parametrized in terms of: [x,y] location, depth, length,
width, strike, dip and opening. We assume a dip of 0◦ given the
apparent symmetry of the deformation signal and the similarity
between ascending and descending interferograms. The remaining
model parameters are constrained between a set of bounds to reduce
the size of the parameter space. We set bounds upon the location
using the results of point source modelling described above. For
the remaining free parameters (length, width and strike) we run a
selected range of forward models, varying a single parameter in
each case. We then calculate the rms and plot a curve of rms versus
model parameter. Bounds are then set based upon regions of low
rms. In addition to geometrical parameters, we specify a Poisson’s
Ratio of 0.25. As was observed for a point source, solutions are
non-unique, and we identify a trade-off between the magnitude of
the source and the depth (Fig. 7b).

From Monte Carlo analysis we find that rectangular sills tend
towards lengths in excess of 20 km due to residual atmospheric
stratification across the highland to the south-west of the volcano,
which elongates the subsidence signal (Figs 1a and 4). These lengths
are unrealistic: a sill of this size does not fit with models of levelling
or GPS data. To overcome this, we rerun the inversion procedure
solving for a square sill (length-to-width ratio = 1). We find that
square sills with length and width <4 km fit the data to within
1 per cent of the rms for the best-fitting rectangular sill (Fig. 7c).

The best-fitting source geometry found by inverting all data sets
is a square sill with length and width 1 km, located at 9.5 km depth
with maximum opening of −1.2 m yr−1 (Table 2; Fig. 8). This
model gives rms values of 1.67, 1.16 and 2.48 mm for ENVISAT
ascending, ENVISAT descending and ALOS data sets, respectively
(Fig. 8). We estimate the expected error (σ ) of each InSAR result
using covariance analysis (eq. 3). As each InSAR result is pro-
duced using multiple interferograms, the expected error is reduced
to σ /

√
N , where N is the number of observations and σ is assumed

to be uncorrelated between observations (e.g. Parks et al. 2011). We
obtain expected error values of 1.4, 1.1 and 2.5 mm for ENVISAT
ascending, ENVISAT descending and ALOS data sets, which are of
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Figure 7. (a) Result of Monte Carlo error analysis for inversions of a point source to constrain the source location. Coloured circles represent inversions of
individual data sets and black circles are for joint inversions of all InSAR data. Black line shows the extent of the summit caldera. (b) Trade-off curves obtained
from Monte Carlo analysis showing the trade-off between source strength and depth for different source geometries. (c) Summary of the rms misfit for different
model geometries found by inverting all InSAR data sets. Square sills with width and length <4 km fit the data to within 1 per cent of the rms misfit for the
best-fitting rectangular and circular sills.

Figure 8. Results of inverse modelling. Data are the InSAR analysis results
defined in Section 5.1 and the square sill with parameters specified in Table 2.
Plots of residual are labelled with rms values.

the same order as the rms between the best-fitting model and each
data set.

The final step of the modelling procedure is to ensure that the
model accounts for the high ratio of vertical to horizontal displace-
ments recorded by InSAR. We compare profiles of horizontal and
vertical model displacements to the components of motion derived
from InSAR data, and also consider the magnitude of horizontal
and vertical measurements from GPS and levelling (Fig. 6). The
vertical displacements predicted by the model provide a good fit
to the vertical measurements from InSAR (rms 1.88 mm), with
maximum displacements of ∼−7 mm yr−1, and subsidence extend-
ing for ∼20 km. Model displacements are also mostly within error
of the vertical measurements from levelling, although maximum
model displacements are 1–2 mm yr−1 smaller than those recorded
by levelling. The horizontal displacements from InSAR are more
variable than the vertical measurements, and are of the same mag-
nitude as the errors (Fig. 6). However, profiles do show that the
horizontal model displacements are within the error bounds of the
InSAR measurements. In accordance with GPS observations, the
horizontal displacements predicted by the model are a factor of ∼3
smaller than vertical displacements, and at radial distances <20 km,
the model displacements are within error of the GPS measurements.

Through modelling all available InSAR data, we confirm that
the best-fitting source geometry at MLV is sill-like. However, uni-
form opening of a rectangle is not a physically realistic model, and
we test this solution against a uniform pressure solution—an axi-
symmetric, horizontal, penny shaped crack parametrized in terms
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of: [x,y] location, depth, radius and pressure change (Fialko et al.
2001; Biggs et al. 2009a). This model has been used in other settings
where large ratios of vertical to horizontal displacements have been
observed (e.g. Campi Flegrei, Italy; Battaglia et al. 2006). We fol-
low the same procedure described above to solve for the best-fitting
circular sill and investigate the bounds upon the source parameters.
As for the rectangular sill, we find from Monte Carlo error analysis
that the sill radius tends towards unrealistically large values, and we
therefore opt to constrain the radius of the sill to 1 km, emulating
the geometry of the best-fitting square sill. The best-fitting circular
sill is located within 1 km of the best-fitting square sill, has the
same source depth of 9.5 km and predicts displacements that vary
by only up to 1 mm from those predicted by the square shaped
sill. This suggests that the depth, location and overall nature of the
source are well constrained, but we are unable to distinguish the
exact shape of the source.

6 D I S C U S S I O N

Subsidence of MLV is unique in both duration and stable magni-
tude, with surveys of U.S. Geological Survey geodetic networks
since 1954 providing a long and detailed geodetic history of the
volcano. The focus of this work has been to use the significant
archive of InSAR data acquired at MLV to build upon the long-
term record of subsidence, extending the geodetic history to 2011
and investigating the spatial and temporal pattern of deformation
at higher resolution. Although the application of these data in this
region is problematic, by using a range of data sets from different
satellites and a suite of new analysis methods, we have been able
to use InSAR data to demonstrate that deformation remains at his-
torical rates of ∼−10 mm yr−1. Of the methods used, we find that
π -RATE provides the greatest improvement to coherence, with the
coverage of ENVISAT data sets increased by 30 per cent compared
to the raw interferograms (Table 1). Comparing the mean values of
the orbital and covariance parameters (eqs 2 and 3) before and after
application of π -RATE, we also find that this technique reduces the
level of noise of each data set (Table 1).

6.1 Causes of subsidence

Past studies attribute subsidence at MLV to a combination of fac-
tors including tectonic extension and surface loading, due to the
volume of the edifice and its location at the western edge of the
Basin and Range extensional province (Dzurisin et al. 2002; Poland
et al. 2006). However, GPS measurements show that there is no
resolvable extensional strain across the region (Poland et al. 2006),
and surface loading is at odds with drill hole data, which suggests
that subsidence rates are anomalously high in the present day, as
downwarping of the crust beneath the edifice would have occurred
within only ∼10 per cent of the lifespan of the volcano (Dzurisin
et al. 2002). Poland et al. (2006) suggest that these larger scale
processes would enhance subsidence, rather than be the primary
cause, and infer an additional component to account for volume
loss at depth. Poland et al. (2006) and Dzurisin et al. (2002) dis-
cuss the likelihood of various possible mechanisms: volume loss
due to eruption; drainage to a deeper reservoir; hydrothermal fluid
withdrawal; and cooling and crystallization at depth. Of these pos-
sibilities, Poland et al. (2006) deem drainage or cooling and crys-
tallization to be most likely: the last eruption at MLV occurred 1 ka,
and the steady nature of the deformation since the 1950s does not
agree with a hydrothermal source, as hydrothermal systems gener-

ally exhibit cycles of deformation that occur over shorter timescales
(e.g. Dzurisin et al. 1999). The hypothesis of cooling and crystalliz-
ing magmatic material is also supported by elevated temperatures
discovered by geothermal drilling, thought to be due to either the
reservoir beneath Glass Mountain or basalt intruded at depth in late
holocene times (Donnelly-Nolan et al. 1990).

The depth of the modelled source is significant when considering
cooling and crystallization as a deformation mechanism at MLV.
Rather than the presence of a central magma chamber, the results of
geophysical and geological surveys suggest that MLV is underlain
by an extensive intrusive complex of sills and dikes with varying
compositions (e.g. Finn & Williams 1982; Zucca et al. 1986; Fuis
et al. 1987; Evans & Zucca 1988; Lowenstern et al. 2003). Seismic
tomography studies of the volcano reveal a small magma body
located beneath Glass Mountain (the site of most recent eruption
∼1ka) at 3–7 km depth (Evans & Zucca 1988), but they also indicate
that a subsolidus pluton could be present within the larger intrusive
complex (Ritter & Evans 1997). A shallower source depth may
therefore suggest deformation related to material imaged at Glass
Mountain, whereas a greater source depth may be indicative of
cooling within the underlying intrusive complex.

The best-fitting analytical source model identified in this study
fits with the source mechanisms presented by previous authors and
accounts for the high ratio of vertical to horizontal displacements
derived from InSAR data. The depth of the model (9.5 km) suggests
that, if cooling and crystallization is the cause of volume loss, the
source is likely to be located within the intrusive complex beneath
the volcano, rather than the body of melt imaged at 3–7 km depth.
In their study, Dzurisin et al. (2002) state that an unrealistically
large volume would be required to result in 50 yr of subsidence
due to cooling and crystallization. However, simple thermoelastic
calculations (e.g. Turcotte & Schubert 2014) do not account for the
geotherm, which in this region is thought to be relatively high, or
the underlying intrusive complex, which geodetic models suggest
is the location of the deformation source. This intrusive complex
is described by Poland et al. (2006) as a ‘relatively hot, roughly
cylindrical volume’, and is likely to play a role in driving the ac-
tive geothermal system. Elevated temperatures surrounding the sill
would decrease the rate of cooling, as would the production of latent
heat during the transition from a liquid to a solid phase. Thus, it is
important not to disregard cooling and crystallization as a possible
cause of deformation.

7 C O N C LU S I O N S

This study demonstrates how InSAR data may be successfully ap-
plied in mountainous, vegetated regions by using multiple data sets,
careful data selection and a suite of multitemporal analysis meth-
ods that account for atmospheric and orbital noise sources. Both
StaMPS and π -RATE are freely accessible online and offer user
support, which plays a fundamental role in helping the community
use these methods to better apply InSAR data in challenging re-
gions. The application of these advanced InSAR techniques will be
key to the success of data analysis from the new generation of SAR
satellites, with the limiting factor likely to be the acquisition rate of
the satellite.

Using the results of multitemporal analysis at MLV, we show
that the rate of subsidence constrained by InSAR data is compa-
rable to that obtained from levelling studies since 1954 suggesting
that current rates of deformation at the volcano have been con-
tinuous for over 60 yr. We confirm that, as was observed with
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GPS measurements, the deformation field is characterized by high
ratios of vertical to horizontal displacements, which is a key con-
straint upon source models of deformation. We use geophysical
inversion methods and Monte Carlo error analysis to obtain the
best-fitting source geometry to InSAR data, which we find to be
a horizontal sill located at 9.5 km depth beneath the caldera. This
geometry accounts for the relative magnitudes of horizontal and
vertical components of deformation as recorded by both InSAR
and past ground-based surveys. The model is similar to those
constrained by past data sets, and fits the hypothesis that
deformation at MLV is caused by a combination of tectonic mech-
anisms, plus a component of volume loss at depth. The most likely
cause of volume loss is either drainage or cooling and crystallization
of magmatic material. If cooling and crystallization is the cause of
present day deformation, the depth of the model suggests that it is
related to material within the intrusive complex imaged beneath the
volcano.

The next step of studies at MLV will be to use the high resolution
of InSAR data and these first-order estimates of source geometry
to constrain models of magmatic and tectonic causes of deforma-
tion. This will provide further insight into magmatic conditions in
northern California, but it is also an opportunity to test hypotheses
related to long-term intrusive processes that occur during intererup-
tive periods (e.g. Caricchi et al. 2014).
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