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S U M M A R Y
Studies of interseismic strain accumulation are crucial to our understanding of continental
deformation, the earthquake cycle and seismic hazard. By mapping small amounts of ground
deformation over large spatial areas, InSAR has the potential to produce continental-scale
maps of strain accumulation on active faults. However, most InSAR studies to date have fo-
cused on areas where the coherence is relatively good (e.g. California, Tibet and Turkey)
and most analysis techniques (stacking, small baseline subset algorithm, permanent scatterers,
etc.) only include information from pixels which are coherent throughout the time-span of the
study. In some areas, such as Alaska, where the deformation rate is small and coherence very
variable, it is necessary to include information from pixels which are coherent in some but
not all interferograms. We use a three-stage iterative algorithm based on distributed scatterer
interferometry. We validate our method using synthetic data created using realistic parame-
ters from a test site on the Denali Fault, Alaska, and present a preliminary result of 10.5 ±
5.0 mm yr−1 for the slip rate on the Denali Fault based on a single track of radar data from
ERS1/2.
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1 I N T RO D U C T I O N

Previous studies have clearly demonstrated the potential of InSAR
to detect and measure slow tectonic signals such as interseismic
strain accumulation in places with good interferometric conditions
(e.g. Wright et al. 2001). However, in the long term, InSAR may have
the potential to produce continental scale fault maps which identify
all active structures and measure the rate of strain accumulation
across them. Such a map would be a crucial tool for hazard assess-
ment and provide a valuable data set to advance our understanding
of the mechanics of continental deformation. In order to achieve
this, it is necessary to extend the range of study areas to places with
less ideal conditions. A dedicated InSAR satellite would provide a
much larger volume of data than is currently routinely available and
it is important to understand how this can be used to combat the
problems of interferometric decorrelation.

In comparison with other geophysical phenomena studied using
InSAR, interseismic strain accumulation is small in magnitude and
spread over large spatial distances and temporal time-spans. Inter-
seismic slip rates on major plate boundary faults, such as the North
Anatolian and San Andreas Faults, are typically up to 40 mm yr−1.
However, for intra-continental faults, slip rates of 1–2 mm yr−1 are
more typical. The Denali Fault, Alaska, has an intermediate slip rate,
difficult interferometric conditions, but a large archive of available
data. These are conditions which we might expect if attempting to

produce a global map of fault deformation using a dedicated InSAR
satellite.

Current analysis techniques, such as stacking (e.g. Wright et al.
2001), permanent scatterers (Ferretti et al. 2000) and SBAS
(Berardino et al. 2002), rely on pixels or points being coherent
throughout the data set. Outside dry, rocky and urban areas, these
conditions are rarely met. As an example, we use data covering the
Denali Fault collected by European Space Agency’s ERS satellites
and the Alaska SAR Facility (ASF). Despite an excellent archive
of data acquisitions, the distributed scatterer interferograms are not
consistently coherent enough that it is possible to construct a sub-
set which covers both sufficient area and sufficient time to detect
interseismic strain. We find it necessary to modify existing analysis
techniques in order to include information from pixels which are
only coherent in some of the interferograms.

1.1 Tectonic background: the Denali Fault, Alaska

The tectonics of Alaska are controlled by the interaction between the
Pacific and North American Plates. Both the rate of convergence and
nature of the interface changes along the plate boundary. In the west,
the Pacific Plate is subducting under the North American Plate at a
rate of 68 mm yr−1. To the east, the Queen Charlotte Transform is a
transpressive strike-slip fault. Linking these two contrasting styles
of plate boundary is a complex region of continental deformation
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Figure 1. (a) Location map showing the Pacific–North American Plate
boundary in Alaska. The Denali Fault is part of a complex zone of con-
tinental deformation between the Aleutian megathrust and the Queen Char-
lotte Transform. (b) 2002 Denali Earthquake Sequence showing location of
M6.7 Nenana Mountain Earthquake and M7.9 Denali Fault Earthquake and
associated aftershocks (after Fuis & Wald 2003).

extending several hundred kilometres inland through southern
Alaska (Fig. 1). The Denali Fault is one of the most dominant to-
pographic features within this zone, extending for over a thousand
kilometres through Alaska and into Canada.

The Mw7.9, 2002 November 3, Denali Earthquake was the largest
strike-slip earthquake in North America for more than 150 yr
(Fig. 1). The total rupture length was 340 km with offsets of up
to 9 m (Eberhart-Phillips et al. 2003). The earthquake began with
thrust motion on the previously unrecognized Susitna Glacier Fault
and then ruptured unilaterally from west to east with right-lateral slip
along the Denali and then Totshunda Faults (Wright et al. 2004a;
Hreinsdottir et al. 2006). Only 10 days earlier on 2002 October
23, the Mw6.7 Nenana Mountain Earthquake occurred further west
on the Denali Fault, significantly increasing the Coulomb stress at
the hypocenter of the Mw7.9 November earthquake (Anderson & Ji
2003). Prior to the 2002 earthquake sequence, a magnitude Mw7.2
earthquake is believed to have ruptured at least part of the same
segment of the Denali Fault in 1912 (Carver et al. 2004; Doser
2004). Between 1912 and 2002 the level of recorded seismicity on
this section of the Denali Fault was very low with the majority of
earthquakes M > 4.5 occurring on thrust faults to the north or south
(Doser 2004).

Previous estimates of the slip rate on the Denali Fault are variable,
ranging from ≤3 to 10–20 mm yr−1 (Table 1). The scatter of mea-

Table 1. Previous estimates of slip rates on the Denali Fault from geomorphology and geodesy. Several possible interpretations of the
GPS data of Fletcher (2002) give a range of possible values. In general, the geodetic estimates are lower than those from geomorphology.

Method Estimate (mm yr−1) Reference

Holocene offsets 8–12 Plafker et al. (1994)
Holocene offsets (nr Richardson Highway) 4.5–5.5 Stout et al. (1973)
Holocene OFFSETS (nr Parks Highway) 10–21 Hickman et al. (1977)
Late Pleistocene–Holocene offsets (central Denali) 12.0 ± 1.7 Matmon et al. (2006)

Triangulation network (1975–1988) ≤5 Savage & Lisowski (1991)
Triangulation network (1967–1969) ≤3 Page & Lahr (1971)
VLBI ≤5 Ma et al. (1990)
GPS (Single Fault Model) 8 ± 1 Fletcher (2002)
GPS (Two Fault Model) a5 ±2 Fletcher (2002)
GPS (Block Rotation Model 6 Fletcher (2002)
GPS (Two Fault Block Rotation Model) 5 Fletcher (2002)
InSAR 11.8 ± 5.0 This study

aMultifault model applies to the Parks Highway profile (west of this study area) and accommodates an additional 3 mm yr−1 on
parallel strand within the same fault system.

surements is likely to be due to variations in slip rate along strike
and the assumptions used in the different techniques, some geodetic
and some geological. The offset features measured in the studies of
Stout et al. (1973), Hickman et al. (1977) and Plafker et al. (1994)
are assumed to have an age of 11 000 yr, but no specific dating has
been done on these features. The study of Matmon et al. (2006)
uses 10Be exposure age dating of boulders and sediments from off-
set moraines to estimate slip rates at a number of sites along the
Denali and Totshunda Faults. They find a decrease in slip rate from
east (14.4 ± 2.5 mm yr−1) to west (9.4 ± 1.6 mm yr−1) along the De-
nali fault. This decrease has been attributed to the curvature of the
Denali Fault which causes an associated increase in shortening
across the fault, as expressed by the broad zone of folding and
thrusting in the northern foothills and partitioning of slip onto other
active structures. Alternative studies of postglacial slip rates find
an even stronger decrease from a rate of 13 mm yr−1 at 144◦ W to
7 mm yr−1 at 149◦ W (Meriaux et al. 2004).

Networks of triangulation points or GPS stations can be used
to produce a geodetic estimate of slip rate using a deep-fault
model of interseismic deformation in which the fault extends from
the surface to infinite depth as a single discrete plane (Savage &
Burford 1973; Prescott & Nur 1981). In the seismogenic layer, the
fault behaves in a stick-slip manner; earthquakes occur as discrete
events and no motion takes place on the fault for the remainder
of the earthquake cycle. Beneath the seismogenic layer, the fault
creeps continuously and the surrounding material behaves elasti-
cally. The seismogenic layer acts as an elastic lid, which responds
passively to the deformation in the lower layer. This situation can
be represented as a screw dislocation extending from the base of
the seismogenic layer to great depth within an elastic half-space.
The rate of fault-parallel surface displacement, y, at a perpendicu-
lar distance x from the fault with locking depth d and slip rate s is
given by

y = s

π
tan−1 x

d
. (1)

A profile of fault parallel deformation can then be interpreted
to find locking depth and slip rate. The triangulation networks of
Page & Lahr (1971) and Savage & Lisowski (1991) only include
stations within 20 km of the fault. The absence of any true far
field sites makes the trade-offs between locking depth and slip rate
difficult to assess. The GPS data of Fletcher (2002) can be fit with a
variety of models, but some evidence is found for a second structure
accumulating strain ∼35 km north of the Denali Fault.
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Outline

In this paper, we begin by analysing a set of individual interferograms
constructed over the Denali Fault in terms of their tectonic, orbital
and atmospheric contributions, coherence and unwrapping errors.
This understanding allows us to create a set of synthetic data with
similar characteristics, but a known slip rate. We test various existing
algorithms based on stacking and time-series approaches but find
none of them are applicable to this particular problem. We develop
a new technique combining a network orbital correction, construc-
tion of a rate map and an inversion to find the slip rate. We demon-
strate the method accurately reproduces known slip rates in synthetic
tests and apply it to the Denali Fault, where a slip rate of 10.5 ±
5.0 mm yr−1 is found.

2 A N A LY S I S O F P H A S E
C O N T R I B U T I O N S T O I N D I V I D UA L
I N T E R F E RO G R A M S

The Alaska SAR Facility (ASF) has an extensive archive of SAR
data over Alaska collected using the European Space Agency’s
satellites ERS-1 and ERS-2. We chose to study the Denali Fault
at the point where the Alaska Range is crossed by the Trans-
Alaska Pipeline and Richardson Highway (Fig. 1) where coseis-
mic studies have demonstrated better coherence (Wright et al.
2004a). Of the six tracks which cover this area, three ascend-
ing and three descending, we use descending track 329 as a test
track. During the mainly snow-free months of March–November
in the years between 1992 (the launch of ERS-1) and 2002 (the
Denali Earthquake) there were 48 acquisitions (Fig. 2). Inter-
ferograms are processed using the JPL/Caltech ROI PAC soft-
ware (Rosen et al. 2004), filtered using a power spectrum filter
(Goldstein & Werner 1998) and unwrapped using a branch cut al-
gorithm (Goldstein et al. 1988). We use the resulting data set to
investigate the characteristics of orbital and atmospheric errors and
coherence in the Denali Region. Some examples showing typical or-
bital and atmospheric errors and the results for various combinations
of temporal and spatial baseline are shown in Fig. 3.

2.1 Coherence

In order to construct an interferogram, the phase response from
a pixel on the ground must remain roughly constant between the
two image acquisitions. This factor is usually quantified in terms of

Figure 2. Baseline-time plot for descending track 329 showing acquisitions
between March and November only. Solid lines represent interferograms
where unwrapping across the Alaska Range was possible; these interfero-
grams form the basis for this study.

Figure 3. Example interferograms from Denali Fault Data set. (a) Exam-
ple with large residual orbital error equivalent to 6 fringes across-track. (b)
Example with significant short-wavelength water-vapour related features
(likely to be caused by gravity waves) (c) Shorter duration, shorter baseline
interferogram showing high coherence (d) Long duration, long baseline in-
terferogram showing poor coherence; although in this case it was possible
to unwrap manually across the Alaska Range.

interferometric correlation, γ , across a 3 × 3 pixel window, where
γ = 1 for perfectly stable pixels and γ = 0 if the phase response in the
two images is independent. We chose a coherence threshold of γ =
0.15. Regions composed of pixels whose γ is above this threshold
typically produce a smooth field when unwrapped and thus these
pixels are considered ‘coherent’ whereas pixels for which γ is less
than this threshold appear to have random phase values. We expect
the percentage of coherent pixels in an interferogram to decrease
with both temporal and spatial baseline (Fig. 4).

The topographic contribution to an interferogram results from the
difference in incidence angles between the two acquisitions and so
scales with both topography and perpendicular baseline. For steep
slopes and/or large baselines, the phase difference across a single
pixel may be large enough to cause geometric decorrelation. Tempo-
ral decorrelation occurs when the properties or distribution of radar
scatterers within a pixel changes between acquisitions. Stable sur-
faces, such as urban and dry, rocky areas remain coherent for many
years whereas very unstable surfaces, typically dense vegetation,
may lose coherence in a few days.

For the Denali region, there is considerable variation in the per-
centage of coherent pixels in an interferogram with any given base-
line combination (see Table S1 in the Supplementary Material, avail-
able in the online version of the journal), but the maximum achiev-
able percentage decays rapidly with both temporal and spatial base-
line. For interferograms of duration ∼1 yr, up to ∼60 per cent of
pixels may be coherent, but for interferograms with duration ∼2 yr,
this is reduced to only ∼25 per cent (Fig. 4).

However, it is not just the total number of coherent pixels which is
important, but the number of pixels whose phase can be unwrapped
relative to a reference pixel. Like many other major strike-slip faults,
the Denali fault is associated with a significant topographic feature;
the Alaska Range with relief in excess of 4 km. The steep slopes
of the Alaska Range cause geometric decorrelation and provide a
barrier to unwrapping. For this reason, we focus our study on the area
around the Delta River Valley which crosses the Alaska Range and
contains the Trans-Alaska Pipeline and the Richardson Highway.
In many cases, this valley provides a coherent bridge between the
lowland areas to the north and to the south. From the 48 acquisitions
on the chosen track, it is possible to construct 77 interferograms with
duration <2 yr and perpendicular baseline <200 m. Of these, 44
could be unwrapped across the fault and these interferograms form
the basis for this study (Fig. 2).
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Figure 4. Decrease in percentage of coherent pixels in an interferogram
with both spatial and temporal baseline. (a) Data are interpolated onto a
grid of 10 m × 20 days using triangle-based linear interpolation (b) vari-
ation with spatial baseline c) variation with temporal baseline. Pixels are
defined as coherent if γ > 0.15. For interferograms of duration ∼1 yr up to
∼60 per cent of pixels may be coherent, but for interferograms with duration
∼2 yr, this is reduced to only ∼25 per cent.

2.2 Contribution from interseismic strain accummulation

Interseismic strain accumulation occurs slowly in comparison to
other types of tectonic signal traditionally studied using InSAR,
such as coseismic deformation. We wish to predict the approximate
contribution of interseismic deformation to a single interferogram
using previous estimates of slip rate on the Denali Fault.

We use the deep fault model described in Section 1.1 for which
the locking depth is equivalent to the thickness of the seismogenic
layer which can be inferred from studies of coseismic deformation.
Distributed slip models of coseismic deformation based on geodetic
data from the 2002 Denali Fault earthquake find the majority of slip
occurred at depth above 12–15 km (Hreinsdottir et al. 2003; Wright
et al. 2004a; Hreinsdottir et al. 2006). However, there was a patch of
slightly deeper slip in the area of the Trans-Alaska Pipeline, which
suggest a thicker seismogenic layer may be appropriate for this study.

The Denali Fault has significant curvature and for modelling pur-
poses has often been approximated by a small circle bounding a
rotating block with the pole of rotation located near the south-
ern coast of Alaska (Stout & Chase 1980; Fletcher 2002; Freed
et al. 2006). However, for this study we focus on a short segment
(<100 km) so chose to model the fault as linear feature for sim-
plicity. This may result in some inaccuracies in the area near the
fault.

Figure 5. Model interferogram based on a deep fault model with a locking
depth of 15 km and a slip rate of 5 mm yr−1. The fault-parallel motion over
a 1 year duration are projected into the satellite line-of-sight (los) for a de-
scending orbit taking into account variations of incidence angle across track.
Blue colours represent range decrease and red represents range increase.

Fig. 5 shows the predicted deformation over a period of 1 yr for
a deep fault model moving at 5 mm yr−1 below an elastic lid 15 km
thick. The deformation is projected into the satellite line-of-sight
appropriate for the interferograms used in this study. The values
vary between ±0.9 mm with a maximum gradient of 0.04 mm km−1.
This is significantly less than the 28 mm of range change required
to produce a single interference fringe.

2.3 Orbital contribution

Satellites are perturbed from a nominal elliptical orbit by a number
of phenomena. Some, such as tidal pull and lateral variations in the
earth’s gravity field can be modelled accurately, but others including
solar radiation pressure, thermal reradiation and atmospheric drag
are more difficult to predict (Ziebart et al. 2005). Through orbital
manoeuvres, the ERS satellites are steered to ±1 km of the nominal
ground track. As a result, the two radar images which are combined
to create an interferogram are usually taken from different locations.
This baseline separation causes a difference in path length which
varies primarily with incidence angle and to a lesser degree with
topography. InSAR processing software, such as ROI PAC, initially
removes the effect of baseline separation approximating the surface
of the earth to be a smooth ellipsoid; once linearized, the resulting
rate of change in phase with respect to incidence angle is directly
proportional to the perpendicular baseline. Subsequently, a digital
elevation model (DEM) can be use to correct for additional topo-
graphic effects.

Our knowledge of the satellite orbits is imperfect: the best avail-
able models for ERS have quoted accuracies of 5–7 cm radially
and 10–15 cm cross-track (Scharoo & Visser 1998). Therefore,
even after the effects of baseline separation have been removed,
an orbital error remains in the interferogram (Fig. 3a) (Zebker et al.
1994). The orbital parameters can be re-estimated empirically fol-
lowing filtering and unwrapping by finding the perturbation to the
orbital parameters which best matches the observed phase. Since the
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unmodelled accelerations are usually small, the baseline error
changes slowly in the along track direction. For short strips of data
(i.e. 1–2 frames, 100–200 km along track) a linear approximation is
usually sufficiently accurate, but for longer strips of data, a quadratic
approximation may be required. Hanssen (2001) finds that the ratio
between the coefficient of the quadratic term and the linear term is
approximately 10−6 indicating the signal is only weakly curved.

Attempting to remove the orbital contribution empirically will
also remove the long-wavelength component of the signal. For many
applications, such as glaciology and volcanology, this approach is
sufficient since the deformation signal is only present in a small
portion of the interferogram (e.g. Pritchard & Simons 2002; Rignot
1998) and it is possible to define a ‘far-field’ area of the interfero-
gram which is not affected by deformation and use this to re-estimate
the baseline parameters. However, for studies of interseismic de-
formation the signal covers such a large area that there is no true
‘far-field’. For this reason, we prefer not to re-estimate the baseline
for individual interferograms during processing and to deal with
the issue of orbital contributions at a later stage.

However, we wish to understand the nature of the orbital errors,
so we perform simple tests assuming that in individual interfero-
grams, the interseismic deformation is negligible and that atmo-
spheric errors are short-wavelength in comparison to orbital errors.
We approximate the contribution from the orbital error to be planar
and find the best-fitting plane to each interferogram, z = ux + vy
+ w, where [x , y] is the pixel coordinate (in surface UTM coordi-
nates), u and v are gradient parameters and w is the intercept. We
find that both x- and y-gradients have a roughly normal distribution
centred on zero (see Fig. S2 in the Supplementary Material). This
confirms that the orbital errors can be assumed to be random, that
is, there is no systematic bias, and that the long-wavelength tectonic
signal is much smaller than the contribution from orbital errors. The
mean absolute y-gradient is 0.19 mm km−1, a factor of five greater
than the maximum gradient from our synthetic 1-yr interferogram
for interseismic deformation (0.04 mm km−1). It is interesting to
note that this mean absolute y-gradient is equivalent to about 1.5
fringes across a single frame measuring 100 × 100 km whereas
Hanssen (2001) predicts significantly less than a fringe for the stated
along-track and radial errors. It appears this estimation/correction
technique also accounts for other long wavelength signals, such as
ionspheric and long wavelength tropospheric contributions as well
as errors in orbit.

2.4 Atmospheric contribution

Atmospheric errors result from interactions between the radar beam
and the atmosphere it passes through (e.g. Fig. 3b). The amount of
atmospheric phase delay is determined by the refractive index; pri-
marily a function of pressure and temperature (the ‘dry’ component)
and water-vapour content (the ‘wet’ component). On the length-
scale of interferograms, the most variable, and therefore, the most
significant factor is the amount of water vapour in the troposphere.
By fitting a 1-D covariance function to each of the interferograms,
we investigate the magnitude and spatial scale of the atmospheric
errors in our test area (Fig. 6). To simplify the analysis, we assume
that the statistical properties of the water vapour field are radially
symmetric and have a homogeneous structure across the interfer-
ogram (Hanssen 2001; Parsons et al. 2006) — an assumption that
breaks down in certain atmospheric situations such as the presence
of a weather front. The key statistical characteristics of the con-
tribution of the water vapour field to an interferogram can then be
fully described using a 1-D covariance function. The 1-D covariance
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tribution of covariance parameters σ and α with mean and median values.
Bold lines show parametrized 1-D variance functions using mean and median
values.

function can then be parametrized using a suitable functional form,
for example, c jk = σ 2e(−d jk/α), where cjk is the covariance between
pixels j and k, σ 2 is the variance, α is the e-folding wavelength
and djk is the distance between pixels. More complicated functional
forms can be used which allow negative values of covariance, how-
ever, we chose this form for the sake of simplicity. We find median
values of σ = 7.5 mm and α = 12.3 km. This compares well with
previous estimates of atmospheric noise based on simple statistical
tests. For example, Hanssen (2001), reports root mean square (rms)
values attributed to atmospheric errors ranging from 2.2 to 15.6 mm
for a set of 26 interferograms over the Netherlands; Lyons &
Sandwell (2003) find standard deviations ranging from 0.98 to
13.45 mm, with a median of 8.13 mm for a set of 46 interfero-
grams from California. These values are all much larger than the
predicted range change of 2 mm caused by interseismic deformation
in a single, 1-yr interferogram.

2.5 Unwrapping errors

The phase values in an interferogram are initially wrapped mod-
ulo 2π and an unwrapping step during processing attempts to re-
move the 2π ambiguity to produce a continuous map of phase val-
ues. For complete spatial coverage and in the absence of noise,
this is a simple process. Various algorithms, such as branch cut
(Goldstein et al. 1988) and minimum cost flow (Chen & Zebker
2000) have been developed to tackle this problem in a range of
conditions. Nevertheless, the resulting interferogram often has un-
wrapping errors which appear as 2π phase jumps which can be
spotted visually and manually corrected.

The currently available unwrapping algorithms use spatial in-
formation from a single interferogram. If a large data set is being
produced, including multiple interferograms constructed using com-
mon master or slave images, then additional constraints could be in-
cluded by unwrapping the data set as a whole. Such a 3-D approach
has already been developed for persistent scatterer interferometry
(Hooper & Zebker, in preparation). Developing such an algorithm
for distributed scatterer interferometry is beyond the scope of this
paper, but we use constraints from a network of interferograms to

C© 2007 The Authors, GJI, 170, 1165–1179

Journal compilation C© 2007 RAS



1170 J. Biggs et al.

Figure 7. Phase closure. The tectonic, orbital and atmospheric contribu-
tions to an interferogram should be conservative. Unwrapping errors are not
conservative and can be identified by summing round a loop. Phase jumps,
shown by a colour change blue to red, correspond to unwrapping errors in
one or more interferogram. In this case, the phase jump in the region labelled
‘a’ could be attributed to either interferogram AC or BC, and the phase jumps
labelled ‘b’ and ‘c’ can be attributed to unwrapping errors in interferograms
BC and AB, respectively.

identify unwrapping errors remaining after using the more tradi-
tional branch-cut unwrapping algorithm.

The phase contributions discussed so far, (tectonic, orbital and
atmospheric) behave in a conservative manner. That is φ ln − φ lm −
φmn = 0, where φ lm is the phase contribution to interferogram lm
which is constructed from acquisitions l and m. Unwrapping errors
will not follow this rule so can be identified by summing round a
loop, and looking for residuals. Fig. 7 shows several such unwrap-
ping errors, labelled ‘a’,‘b’ and ‘c’, which are identified as 2π phase
jumps (blue–red). In order to identify the source of the unwrapping
error, each interferogram must be inspected individually. Finding
the exact location of the phase jump is further complicated since
the loop can only be constructed for pixels which are coherent in all
three interferograms. In the example shown in Fig. 7 there is clearly
an unwrapping error somewhere in the region marked ‘a’, but since
both interferograms AC and BC have gaps in coherence at this lo-
cation, it is not obvious which interferogram should be corrected.
In this case, it is necessary to go back and check both interfero-
grams at the stage before unwrapping, and in some cases, before
filtering to identify the error. Several smaller unwrapping errors can
be seen in Fig. 7 and the source of these errors is usually simpler to
identify—in this case the errors labelled ‘b’ and ‘c’ can be seen in
interferograms BC and AB, respectively.

Ideally this technique could be used to automatically detect and
correct all unwrapping errors. However, in practice, for a large net-
work of interferograms, the number of small unwrapping errors
combined with non-discrete errors caused by filtering and resam-
pling makes this difficult to implement automatically and time-
consuming to implement manually. As a result, we restrict ourselves
to identifying major unwrapping errors, paying particular attention
to the area around the fault so that even the ‘corrected’ data set
contains a large number of small unwrapping errors.

3 E X I S T I N G M E T H O D S

We have demonstrated that the atmospheric and orbital contributions
to a 1-yr interferogram are many times larger than the predicted
contribution from interseismic deformation along the Denali Fault.
In addition, the duration of an interferogram is limited by temporal
decorrelation so that it is not possible for an individual interferogram
to cover a sufficiently long-time period such that the interseismic
deformation accumulated is greater than the noise.

3.1 Stacking

Several methods have been used to combine multiple interferograms
to combat this problem. The simplest, stacking, works on the prin-
ciple that the signal in the interferograms has a systematic pattern,
while the atmospheric noise is random. Addition of N interfero-
grams with equal duration has a signal N times larger than a single
interferogram, but the noise is only

√
N times larger. The signal-

to-noise ratio is improved by a factor of
√

N . This method has
been used to detect and measure interseismic strain accumulation in
Turkey (Wright et al. 2001), California, (Peltzer et al. 2001; Fialko
2006) and Tibet, (Wright et al. 2004b).

Most previous studies using stacking have been carried out in
areas of good coherence and only pixels which are coherent in all
interferograms are used. However, for the Denali data set, the per-
manently coherent pixels do not cover a sufficiently large area for
observations of interseismic deformation to be possible. An alterna-
tive approach would be to discard the least coherent interferograms,
to form a smaller, but more coherent data set. By ranking the in-
terferograms according to the percentage of coherent pixels and
successively adding them to the stack, we investigate the spatial
coverage possible for a variety of stacks. We find that stacks which
include a large number of interferograms and so cover a long dura-
tion do not have sufficient commonly coherent pixels. Conversely,
any stack with sufficient spatial coverage, does not have sufficient
duration for the interseismic signal to exceed the atmospheric noise
(Fig. 8).

3.2 Chain stacking

The atmospheric and orbital contributions to an interferogram can
be split into master and slave components. The stacking method can
be improved by constructing a chain of interferograms, such that
the slave of one interferogram is the master of the next. The orbital
and atmospheric contributions from acquisitions in the middle of
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Figure 8. Plot showing spatial and temporal coverage for a range of possible
inteferogram stacks. The interferograms are added to the stack in order,
starting with the most coherent. Percentage areas are calculated with a pixel
size of 640m. After adding each interferogram, the resulting stack time-span
and area are plotted. For a study of interseismic strain accumulation, both a
long duration and good spatial coverage are required. These conditions are
not met by any subset of the Denali Fault interferograms.
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Figure 9. Result of stacking a chain of interferograms covering a total time
period of 10 yr. The resulting stack is still dominated by atmospheric and
orbital contributions.

the chain cancel leaving only the contributions from the first master
and last slave.

The chain can be made of short time-period interferograms which
do not suffer so much from temporal decorrelation so the coher-
ence will be significantly better than a single interferogram cover-
ing the same time-span. The longest chain that can be made from
interferograms covering the Denali Fault has a duration of 10 yr
which corresponds to a predicted tectonic contribution of 20 mm
when projected into the satellite line of sight. However, the result-
ing stack is still dominated by atmospheric and orbital contributions
(Fig. 9).

3.3 Simple rate maps

So far the methods discussed rely on pixels which are coherent
throughout the data set but pixels which are only coherent in some
of the interferograms still contain useful information about deforma-
tion rate. In order to compare pixels which are coherent in different
numbers of interferograms, it is necessary to view the data in terms
of deformation rate rather than total deformation. The simplest way
to do this is to stack all the interferograms and divide by the cu-
mulative duration of the interferograms which are coherent at each
pixel (Fig. 10). Alternatively, each interferogram, which measures
the total deformation between the dates of the master and slave ac-
quisitions, can be converted into an average deformation rate by
dividing by the time span of the interferogram. Assuming interseis-
mic deformation builds up at a constant rate, this should be the same
in any interferogram for a given pixel. A mean rate for each pixel can
be found by least-squares fitting these rate values using whichever
interferograms are coherent at that pixel and weighting the inversion
using our previous estimates of noise.

Both methods assume that the values in the interferogram are
proportional to the duration of the interferograms. This is true for
the tectonic signal but not the orbital or atmospheric components.
If adjacent pixels are coherent in a different number of interfero-
grams, our rate estimation methods will divide the adjacent values
by different durations resulting in a jump (Fig. 10).

3.4 Time-series methods

Time-series methods (Berardino et al. 2002; Schmidt & Burgman
2003; Lanari et al. 2004) are typically used to study deformation
sources which vary significantly with time, such as aquifer and oil

Figure 10. (a) Average deformation rate at each pixel taken from all inter-
ferograms that are coherent at that pixel. The interferograms are dominated
by orbital rather than tectonic contributions so the resulting rate map con-
tains discontinuities. (b) Cumulative duration of interferograms which are
coherent at each pixel.

extraction signals. The details of the methods vary but use a linear
inversion on data from a large number of interferograms to create
a time-series of incremental range change on the date of each ac-
quisition. The permanent scatterers technique (Ferretti et al. 2000)
focuses on point scatterers which do not suffer geometric decorre-
lation and so use can be made of a much larger archive of data. This
method has proved particularly effective in studying urban areas
which have a high density of permanent scatterers (Burgmann et al.
2006), and with some modification, can be applied to more remote
areas (Hooper et al. 2004), however, it has yet to be tested on an
area with terrain similar to Alaska.

These methods rely on pixels or points which are coherent in all
interferograms so cannot be applied to areas such as Denali.

4 S Y N T H E T I C I N T E R F E RO G R A M S

We use the analysis presented in Section 2 to create a data set of syn-
thetic interferograms in order to test a variety of techniques against
known values and understand the effect of each of the various phase
contributions.

Our approach is based on the assumption that the phase in each in-
terferogram, φmn, is composed of five components: the deformation
signal, orbital contribution, atmospheric contribution, offset from
the reference pixel and an error term, ε which includes contribu-
tions from thermal noise, interpolation errors, filtering etc.

φmn = 4π

λ
(tm − tn)rlos + (φorb,m − φorb,n)

+ (φatm,m − φatm,n) + wmn + ε. (2)

The phase contribution from ground deformation is proportional
to the interferogram duration (tm − tn). The rate of displacement
in the satellite line of sight (los), r los, is taken from the deep-fault
model presented in section 1.1. Both the orbital, (φorb,m − φorb,n)
and atmospheric contributions, (φ atm,m − φ atm,n), can be seen as
linear combinations of the errors in the complex radar images used
to produce the interferogram. The offset to the reference pixel, wmn ,
is constant for each interferogram and is a random number which
depends on which seed location is chosen for unwrapping.

In order to approximate a suitable orbital contribution for each
acquisition, we find the mean and standard deviation of the orbital
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parameters estimated in Section 2.3 and use them to produce a set of
random orbital parameters with the same statistical properties. We
assume the orbital errors are uncorrelated, σ 2

mn = σ 2
m + σ 2

n , where
σ mn is the error on the interferogram and σ m is the error on the acqui-
sition. Since the orbital errors are of similar magnitude throughout
the data set, we can assume that σ m ∼ σ n , implying that the orbital
parameters for each acquisition will be smaller than that for the in-
terferogram by a factor of

√
2. Applying this scaling factor to the

set of orbital parameters randomly generated for the interferograms
results in a set of orbital parameters for each acquisition which can
then be used to produce an appropriate orbital contribution for each
pixel of each acquisition.

Similarly the atmospheric parameters for each interferogram
found in Section 2.3 are converted into an atmospheric phase screen
for each acquisition by creating a synthetic atmospheric phase screen
for an interferogram and dividing by a factor of

√
2 to convert to an

atmospheric phase screen for an acquisition.
We create atmospheric phase screens for a set of interfero-

grams using the parameterisation of atmospheric noise discussed in
Section 2.4. The decay distance and variance are assumed to be
constant and the value chosen are the median values, ᾱ = 12.3 km
and σ̄ = 7.5 mm. These are then converted into correlation coef-
ficients which can be used to create a variance–covariance matrix
for a sparse grid of datapoints. A Cholesky factorisation is used to
produce values at each datapoint with the correct statistical proper-
ties (Parsons et al. 2006). The sparse grid is then interpolated to the
required resolution.

We combine the tectonic contribution for the appropriate dura-
tion with orbital and atmospheric contributions to produce interfer-
ograms with the same distribution of master and slave images as for
the Denali test data set. We use the coherence masks for a threshold
of γ = 0.15 derived from the actual Denali interferograms to sim-
ulate the effects of temporal and geometric decorrelation (see Fig.
S3 in the Supplementary Material).

5 I T E R AT I V E S L I P R AT E E S T I M AT I O N
W I T H N E T W O R K O R B I TA L
C O R R E C T I O N

5.1 Algorithm overview

In order to measure fault slip rate, we use an iterative algorithm with
three steps; orbital error correction, construction of a rate map, and
estimation of the fault slip rate (Fig. 11). The first step estimates
and removes the orbital error on each acquisition. Next, we estimate
the best-fitting deformation rate at each pixel based on whichever
interferograms are coherent and produce a rate map and associated
error map. The last step is to invert the rate map to find the best
fitting slip rate using assumptions about the geometry of the fault.

On the first pass, the slip rate is underestimated due to the long-
wavelength similarities between orbital error and interseismic strain.
To adjust for this, we iterate the procedure by removing from the
interferograms a model produced using the best-fitting slip rate, re-
estimating the orbital error and adding back in the model. An a
priori estimate of slip rate from alternative data could be used to be
reduce the number of iterations required. We illustrate the method
using synthetic data constructed using the techniques described in
Section 4. We test our algorithm on two examples; the first is purely
the tectonic component, with a slip rate of 40 mm yr−1 and secondly
using the same tectonic component but with additional atmospheric
and orbital contributions. We average the pixel values in the original

STEP 1 : 
Orbital Correction

STEP 2 : 
Rate Map Construction

STEP 3 : 
Slip Rate Estimate

Least squares inversion to find best fitting simultaneous 
linear ramp at each acquistion and static offset for each 
interferogram using a network approach. Choose a ref-
erence pixel which is coherent in all interferograms.

Least squares inversion to find best fitting rate for 
coherent interferograms at each pixel.  Construct 
variance-covariance matrix to account for temporal 
correlation.

Use forward model for a rate of 1mm/yr as Green’s 
Function for least squares inversion to find best fitting 
slip rate on fault. Use 1-D covariance function to set up 
variance-covariance matrix to account for spatial cor-
relation. 

Remove 
Modelled
Deformation

Add Back 
Modelled 
Deformation

Figure 11. Flow chart showing the algorithm for analysing interseismic
strain accumulation using distributed scatterer interferograms in areas where
coherence is variable.

interferograms to produce a pixel size of 6.4 km, in part, to reduce
the number of datapoints within the data set for ease and speed of
calculation, but also to reduce the correlation of the atmospheric
contribution between adjacent pixels.

Testing on synthetic data allows us to verify that the algorithm
accurately reproduces the input parameters, identify any trade-offs
or systematic bias, and find the range of slip rates for which the
algorithm is applicable.

5.2 Network orbital correction

Most previous studies estimate the orbital contribution on interfer-
ograms individually. However, each acquisition is used to construct
several interferograms and so it is possible to estimate the orbital
contribution to a single acquisition using constraints from many
interferograms. Therefore, we prefer to use a network approach to
empirically estimate the orbital error on each acquisition rather than
each interferogram.

We have already demonstrated in Section 2.5 that the orbital con-
tributions to interferograms behave in a conservative manner and
can be thought of as the difference between the orbital contribu-
tions to each acquisition. Initially we assume the interferogram is
dominated by the orbital contribution and any other contribution is
considered a source of noise. Assuming a planar orbital error, for a
pixel, p, at location [xp, yp], the phase in the interferogram, φ lm can
then be written as a linear function of two parameters, u and v, for
each of the acquisitions, m and n, and a reference frame shift for the
interferogram, wmn

φmnp = um x p − un x p + vm yp − vn yp + wmn . (3)

Similar equations can be written for each coherent pixel in each
interferogram.

This approach separates the long wavelength component (due to
orbital errors and long wavelength ionospheric and tropospheric de-
lays), which behaves as a linear combination of the long wavelength
components on the acquisitions, from the long wavelength tectonic
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signal, which is simply related to the duration of the interferogram.
Short duration interferograms, which are often ignored because they
have only a small component of deformation, provide valuable addi-
tional constraints to improve the estimates of the orbital component.
The value wmn is a reference frame shift which takes into account the
different seed locations used when unwrapping each interferogram.

Problems of this kind are intrinsically underdetermined since
there will always be at least one fewer interferogram than the num-
ber of acquisitions. For a system of N interferograms with P pixels
constructed using A acquisitions, there are 2A + N unknowns and
NP observations, however, not all these observations act as indepen-
dent constraints, the rows of the design matrix are linearly related
giving a rank of 2(A − 1) + N . We use a truncated singular value
decomposition to find the minimum norm solution using a thresh-
old of 2 × 10−9 for truncating the singular values. This approach
distributes the remaining orbital error, which cannot be solved for,
across the existing orbital corrections, leaving an additional planar
tilt and offset which must be corrected for at a later stage in the algo-
rithm. For 90 m resolution, each interferogram contains roughly one
million pixels making a total of 4.4 × 107 observations. However,
since we are primarily interested in long wavelength features, this
stage can be carried out at a much lower resolution, for example a
pixel size of 6.4 km reduces the number of observations to a more
manageable 7500. The variance–covariance matrix for these obser-
vations would contain 55 million elements. Although the matrix
would be sparse, we make the assumption that the observations are
uncorrelated and equally noisy and perform the inversion without a
variance–covariance matrix.

Once the orbital parameters have been estimated, they can be used
to construct a full resolution version of the orbital contribution for
each interferogram and then removed (Fig. 12).

A comparison between the estimation of orbital errors using the
network approach versus the simple planar approximation used in
Section 2.3 is shown in Fig. 13. The test is carried out on a set
of synthetic interferograms composed of a planar orbital error, at-
mospheric and interseismic deformation contributions. The network
orbital correction technique reduces the rms misfit between input pa-
rameters and correction parameters from 0.118 to 0.107 mm km−1 in
the x-direction and from 0.194 to 0.180 mm km−1 in the y-direction;
an improvement of 5–10 per cent. The accuracy of the ramp param-
eters for an individual interferogram depends on the coherent area
available, so for interferograms with poor coherence, the errors on
the estimated ramp parameters are large. By using the network ap-
proach we improve the estimates for these interferograms, by using

Figure 12. Results of network approach to orbital correction. (a) Interfer-
ogram number 18 (970611–990616). The interferogram is dominated by
a long-wavelength orbital component. (b) Simulated orbit using network
correction. (c) Interferogram after network orbital correction. The long-
wavelength orbital component has been removed, and the dominant com-
ponent is now atmospheric. Note change in colour scale. The pixel size is
6.4 km to reduce calculation time.

Figure 13. Comparison between methods of estimating orbital parameters
from synthetic interferograms composed of a planar orbital error with con-
tributions due to the atmosphere and interseismic deformation. The network
approximation (blue circles) reduces the root mean square misfit from 0.118
to 0.107 mm km−1 in the x-direction and 0.194 to 0.180 mm km−1 in the
y-direction when compared to the traditional method based on individual
interferograms (yellow triangles).

information from interferograms for which the orbital parameters
are best constrained. Hence we are able to produce an overall im-
provement in the orbital correction despite reducing the number of
free parameters.

5.3 Rate map formation

It is necessary to combine measurements from pixels which are co-
herent in some but not all the interferograms. We use a least-squares
matrix inversion on a pixel-by-pixel basis to find the best fitting rate,
r los, from the available interferograms at each pixel (Fig. 14a).

2π

λ
Trlos = P, (4)

where T is a vector containing the time-spans, [t 12, t 23, t 34 . . . tmn]T ,
and P is a vector containing the phase, [φ12, φ23, φ34 . . . φmn]T for
each interferogram which is coherent at that pixel.

The inversion is weighted using a variance–covariance matrix,
�P, to take into account the atmospheric and orbital noise at each
interferogram and the correlation between interferograms. The ele-
ment σ lm−nq of the variance–covariance matrix, �P corresponding
to the interaction between interferograms lm and nq depends on the
atmospheric error estimate for each interferogram σlm and σnq, the
orbital error estimate on each pixel, σp , and the correlation between

Figure 14. Rate and error maps for synthetic data using a slip rate of
40 mm yr−1 with atmospheric and orbital contributions. (a) Rate map. Pix-
els to the north of the fault have higher line-of-sight rates (red), with lower
rates (blue) south of the fault reflecting right lateral tectonic deformation.
(b) Error map. The errors are lowest at pixels which are coherent in a large
number of interferograms. (c) Rate map with intensity inversely proportional
to error estimate. Bright pixels are those with the smallest error.
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Figure 15. Profiles across the rate maps for synthetic experiments. Each
pixel is plotted according to distance from the fault. A (red dots) are taken
from synthetic data with only a tectonic component. The scatter of the pixels
around an inverse tangent function is caused by changes in the line-of-
sight vector across the track. B (blue dots) are from synthetic data with
tectonic, atmospheric and orbital contributions. The additional orbital and
atmospheric contributions further increase the scatter and introduce a long-
wavelength tilt which is removed by iteration.

interferograms.

σlm−nq = (
σlmσnq + σ 2

p

)
clm−nq . (5)

If the interferograms, lm and nq, have a common master or a
common slave (l = n or m = q), clm−nq = 0.5; if the master of one
interferogram is the slave of the other (l = q or m = n), clm−nq =
−0.5 and at l = n and m = q, clm−nq = 1. For the sake of simplicity,
the atmospheric error, σlm, on each interferogram is assumed to be
constant and the value chosen is the median value of 7.5 mm from
the analysis of atmospheric noise in Section 2. Since a common
reference pixel is used for all the interferograms, errors in the or-
bital adjustment increase with distance from this point. The orbital
error parameter for each pixel, σp , is based on its distance from the
reference pixel and an assumed slope of 2.6 mm per pixel in the
x-direction (0.41 mm km−1) and 1.7 mm per pixel in the y-direction
(0.27 mm km−1) given by the standard deviation values of gradients
calculated in Section 2.3. Since the inversion is carried out on a pixel
by pixel basis, it is not necessary to include the spatial correlation
between pixels. The rate and associated error at each pixel (Fig. 14b)
is given by,

rlos = λ

2π
[TT �P

−1T]−1TT �P
−1P (6)

�r = [TT �P
−1T]−1. (7)

For the synthetic tests, the rate of strain accumulation is suffi-
ciently rapid that the interseismic signal clearly dominates the pixel
values in the rate maps (Fig. 14). The reliability of the values at
each pixel depends on the number and distribution of interfero-
grams which are coherent at that pixel so we use the values from the
error map to determine the intensity of the pixels such that bright
pixels have low a priori errors (Fig. 14c). We create swath profiles
across the rate maps by plotting each pixel value against perpendic-
ular distance from the fault. In the case of the noise-free test, the
profile takes the form of an inverse tangent as expected (Fig. 15)
with spread caused by variations in the satellite line-of-sight be-
tween pixels. A similar profile from the test including noise shows
additional scatter caused by the atmospheric errors, but still follows
the prediction for a slip rate of 40 mm yr−1.

5.4 Slip rate estimate

We wish to estimate the slip rate on the fault, s, from the rate and
error maps we have produced. For an assumed fault geometry and
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Figure 16. Correlation between pixel values in a forward model of tectonic
deformation (horizontal axis) and the rate map. For A (red dots) where the
only component in the interferograms is tectonic, the correlation is perfect
and the point fall on a straightline. The gradient of the line reflects the slip
rate on the fault. For B (blue dots), the orbital and atmospheric contributions
increase the scatter around the line, but do not alter the gradient.

locking depth, we model the rate of ground deformation expected
for a nominal slip rate (1 mm yr−1). We use a simple deep fault
model (Section 2.2). We expect the ground deformation to scale
linearly with slip rate so a direct comparison of the corresponding
pixel values in the rate map and the forward model should result in
a straight line. The noise free test shows perfect correlation between
the forward model and rate map, with the slope of the line reflecting
the slip rate. For the test including noise, the points no longer fit on
a perfect straight line, but the correlation is clear (Fig. 16).

Similarly, the forward model can be used as a Green’s function
for a linear least-squares inversion to find the slip rate, s,

rp = s f p + gx p + hyp + q, (8)

where rp are pixel values from the rate map and fp are the cor-
responding pixel values from the forward model. The additional
parameters g, h and q are included to allow for the planar tilt and
offset between the forward model and rate map which resulted from
in using the minimum norm solution to the network orbital correc-
tion. The inversion is weighted using a variance–covariance ma-
trix, � P which takes into account the error estimates on each pixel
and the spatial correlation between pixels. The elements, σ jk , of
the variance–covariance matrix, �P , are constructed using σ jk =
σ jσkcjk , where σ j are the error estimates on each pixel producing
during formation of the rate map and cjk is the spatial correlation
between the pair of pixels. We estimate the correlation coefficients,
cjk using the exponential form with average value ᾱ = 12.3 km from
the analysis of the Denali data set (Section 2.4).

For the synthetic test using only the tectonic signal, the initial
slip rate estimate is 38 mm yr−1. This is because some of the long-
wavelength interseismic signal ‘leaks’ into the orbital adjustment,
(which should be zero in this test); the orbital errors are overcor-
rected. For further iterations, an approximate slip model is removed
before the orbital estimation step so that, although a similar pro-
portion of the remaining interseismic signal is mistakenly identified
as orbital error each time, as the slip model improves, so does the
orbital error estimate. The absolute error is reduced with each it-
eration, gradually converging on the correct value. The algorithm
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Figure 17. Monte Carlo error estimates on slip rate for (a) synthetic data
with a slip rate of 40 mm yr−1 (b) interferograms from the Denali Fault
to which synthetic noise has been added. Slip rate is found for 100 sets
of synthetic data with suitable atmospheric and orbital characteristics. (c)
Results of synthetic tests on a range of slip rate. Error bars are the result of
Monte Carlo error analysis and are independent of slip rate.

converges logarithmically on a value of 40.0399 (4d.p.) which is
accurate to better than 0.1 mm yr−1. The number of iterations nec-
essary depends on the accuracy required.

For the synthetic which included noise, the best fitting slip rate
is again 40.0 mm yr−1. Since we use variance–covariance matrices
to weight our inversions at each stage of the algorithm, we produce
an a priori estimate of the error on the slip rate. This significantly
underestimates the scatter in results, probably because the spatial
correlation between pixels is underestimated, so we prefer to use a
Monte Carlo method for a more realistic error estimate. The Monte
Carlo method involves creating 100 perturbed data sets using sim-
ulated noise. Noise is simulated in the same way as described in
Section 4. The results of a Monte Carlo error analysis for test B
shows an average slip rate of 40.1 mm yr−1 with a one sigma error
of 5.5 mm yr−1 (Fig. 17). Synthetic tests using a range of slip rates
between 0 and 50 mm yr−1 for interferograms containing orbital and
atmospheric contributions show that the Monte Carlo error varies
little with slip rate (Fig. 17c).

Tests using forward models with different locking depths show
that there is considerable trade-off between locking depth and slip
rate, with greater locking depths requiring higher slip rates to match
the same surface observations. The locking depth is poorly con-
strained by the data so use must be made of a priori estimates of
the thickness of the seismogenic zone. For example, for synthetic
data constructed using a locking depth of 10 km and slip rate of
40 mm yr−1, slip rate estimates range from 28 ± 3 mm yr−1 for an
assumed locking depth of 2 km to 51 ± 8 mm yr−1 for an assumed
locking depth of 20 km.

6 D E N A L I FAU LT

We now apply this algorithm to the Denali Fault in Alaska and com-
pare our estimates of slip rate to those from other methods, both
geodetic and geological. The interferograms are taken from our test

Figure 18. Denali Fault: (a) rate map after three iterations; (b) profile across
the rate map. Filled dots represent pixels whose error estimate is less than
3 mm yr−1; (c) residual between rate map and model and (d) rms of residuals
between individual interferograms and model interferograms created from
rate map and orbital corrections.

track (329), which is described in Section 2. In order to apply this
algorithm directly, we assume the fault is purely strike-slip with no
vertical motions and ignore other sources of surface deformation.
In both cases, these assumptions are oversimplifications since the
presence of the Alaska Range indicates uplift and GPS data show
deformation from subduction zone extends this far inland. Defor-
mation associated with the flow of glaciers is removed from the
interferograms before the algorithm is applied.

The best-fitting slip rate found using our algorithm is
10.5 mm yr−1. The rate map shows a clear step at the location of the
Denali fault with positive deformation rates (towards the satellite)
to the north and negative deformation rates to the south (Fig. 18a).
The Monte Carlo error estimate on the slip rate is ±5.0 mm yr−1

(Fig. 17b).
We construct maps of the residual between the interferograms,

rate map and model to identify any additional components in the in-
terferograms which we have not accounted for. In order to study the
residual between the rate map and the tectonic model, a model rate
map is produced by scaling the forward model by the slip rate esti-
mate. Systematic patterns in this residual may indicate non-random
errors caused by contributions to ground deformation not accounted
for by the simple tectonic model. The residual left when a model
rate map is removed from the actual rate map has a median value
of 2.3 mm yr−1 (Fig. 18c). The only exception is in the region close
to the fault, where the misfit is up to 5 mm yr−1 which could be
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attributed to a range of causes such as an inaccurate locking depth,
complex geometry or multiple fault strands.

In order to assess errors in the construction of the rate map, we
create synthetic interferograms with orbital contributions based on
model parameters produced by our algorithm. The tectonic contri-
bution can be approximated by scaling the rate map according to
the duration of the interferogram. The residual between the synthetic
interferograms and the original interferograms should be equivalent
to the atmospheric contribution. Fig. 18(d) shows the rms value of
the residual for each pixel. For all interferograms, the residual at the
reference pixel is zero. The residual grows radially outwards from
the reference point reaching a maximum of about 15 mm. Overall,
the rms value of the rms residuals is 6.1 mm comparable to our
estimate for atmospheric noise in this region.

As with the synthetic data, there is significant trade-off between
slip rate and locking depth for the Denali Fault data (Fig. 19a).
A priori estimates of the thickness of the seismogenic layer vary,
with the peak coseismic slip occurring to depths of 9 km (Hreins-
dottir et al. 2006) and aftershocks occurring to depths of 11 km
(Ratchkovski et al. 2004).

7 D I S C U S S I O N

We have presented a new method for finding the interseismic slip
rate on a fault under difficult interferometric conditions. A num-
ber of possible improvements to the algorithm suggest themselves,
mostly related to the oversimplification of the functional model for
interseismic strain accumulation. It is worth noting that although
this method was designed with the intention of studying interseis-
mic strain accumulation, it could be applied to any source of ground
deformation for which the geometry is known. Here we discuss plans
for future modifications to the algorithm and compare our prelimi-
nary result for slip rate on the Denali Fault to other estimates.
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Figure 19. Trade-off between locking depth and slip rate for estimates of
interseismic strain accumulation on the Denali Fault.

7.1 Future improvements to the algorithm

The network orbital correction technique offers a significant im-
provement (5–10 per cent) over traditionally methods applied to in-
dividual interferograms. However, the orbital errors are more com-
plex than the planar approximation used here. Even assuming a
flat earth geometry, the cross-track error will vary with look angle
rather than linearly. Ideally, we would estimate the orbital parameters
such as parallel and perpendicular baseline directly using a spherical
geometry.

Our model assumes that all motion is horizontal and parallel to the
fault. The presence of the Alaska Range, including the 6000 m peak
of Mt McKinley, indicates that some vertical motion, albeit possibly
distributed, is occurring. A significant vertical component of motion
was observed during the 2002 earthquake (Hreinsdottir et al. 2006).
Apatite fission track data from the Denali Region indicates a mean
surface uplift of 0.5 mm yr−1 since the onset of rock uplift at 5–
6 Ma (Fitzgerald et al. 1995). The vertical motions, although likely
to be smaller than the horizontal motions, are important because the
incidence angle of 23◦ of the ERS satellites means they dominate
the measurements taken in the line of sight. Our algorithm could
easily be modified to allow for variable rake by solving for two slip
rate parameters, one horizontal and one vertical. Furthermore, the
inclusion of data from both ascending and descending passes of the
satellite rather than a single test track would allow us to distinguish
between horizontal and vertical motions.

The geometry of our model is oversimplified, a single linear fault
model is appropriate for our synthetic data, but the Denali Fault
itself has significant curvature in this region. We are also consider-
ing the Denali Fault in isolation, ignoring other sources of ground
deformation in the region. Possible tectonic influences include the
effects of plate coupling at the subduction zone which may add a
potential bias to the south of Denali fault. The SAR look angle is
particularly sensitive to vertical motions. While it is possible to build
vertical motions along the Denali Fault into more complex models
of fault geometry, non-tectonic vertical motions, such glacial iso-
static adjustments (GIA) may add a potential bias to the system. The
southeast of Alaska is known to be uplifting rapidly in response to
glacial melting following the Little Ice Age (Larsen et al. 2005).
However, both the subduction zone and GIA signals are far-field
effects and sufficiently long-wavelength for our algorithm to incor-
porate them into the network orbital correction rather than the model
of fault slip.

Recent analysis of vertical GPS measurements (J. Freymueller
et al., personal communication) suggest there may be a significant
vertical step of as much as 5–6 mm yr−1 across the Denali Fault
(north side up). To test the effects of this on our InSAR analysis,
we impose a range of vertical slip rates on our deep fault model and
solve for the remaining horizontal slip rate (Fig. 19b). The signal in
the InSAR data can be matched by a vertical slip rate of 1.9 ± 1.5
mm yr−1 alone, without requiring any horizontal motion. The steep
incidence angle of ERS/Envisat (23◦) means that only a small ver-
tical displacement is required to account for the observed change in
line-of-sight. Whilst the notion of vertical motion on a vertical, deep
fault is not considered physically realistic, it serves as a rough ap-
proximation for the type of step observed in the GPS data. The trade-
off between horizontal and vertical motions will be significantly re-
duced when considering multiple InSAR tracks from different look
directions and so this issue is left as a subject for future study. The
assumption of purely horizontal motion on major strike-slip faults is
common place in other interseismic studies (e.g. Peltzer et al. 2001;
Wright et al. 2001, 2004a; Fialko 2006) and even small amounts
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of vertical motion may have significant implications for slip rate
estimates.

The deep-fault model can be considered unrealistic for both the-
oretical and observational reasons. As temperature increases with
depth, the dominant deformation mechanism of quartz changes from
brittle failure to dislocation creep. As a result, deformation is no
longer localized on discrete planes but is distributed throughout
the medium. As a result, a shear zone model of deformation below
the seismogenic layer may be more realistic than a simple deep-
fault model (Prescott & Nur 1981; Bourne et al. 1998). Attempts to
model observations of post-seismic deformation mostly use layered
structures with complex rheology (e.g. Pollitz et al. 2000). GPS data
from the first 2 yr following the 2002 Denali Fault earthquake have
been modelled using a combination of flow within a viscoelastic
mantle extending from 60 km down, lower crustal flow (or after-
slip) at depths of 15–60 km and poroelastic rebound (Freed et al.
2006). A truly satisfactory model of rheological structure should
be consistent with all phases of the earthquake cycle. However, be-
cause deformation at the surface is filtered through an elastic lid,
features with a half-wavelength narrower than π L , where L is the
thickness of the elastic lid cannot be resolved (Savage 1990). Thus,
for a seismogenic thickness of 15 km, a shear zone narrower than
50 km could not be distinguished from the single fault implied by
the deep fault model from surface observations. Integrating geodetic
observations of the present-day deformation field with longer term
geological constraints on factors such as slip rate and earthquake
recurrence intervals it may be possible to produce models which are
more compatible with our physical expectations of fault-structure
at depth (Segall 2002).

The Denali Fault is a crustal scale suture, marking the geological
boundary between the Yukon-Tanana terrane to the north and the
Wrangellia composite terrane to the south. The elastic shear modu-
lus, as inferred from seismic velocities, shows a clear discontinuity
coincident with the trace of the Denali Fault at depths ranging from
33 to 65 km (Eberhart-Phillips et al. 2003; Freed et al. 2006). This
suggests that the shear zone at depth is narrow and a deep-fault
model, whilst not necessarily geologically accurate, is a justifiable
simplification in this case. The width of the shear zone beneath the
seismogenic layer has little impact on far-field surface observations
so to use InSAR studies to provide more constraints on this aspect of
interseismic deformation would require higher resolution or a more
distance based subsampling algorithm to improve the near-field
resolution.

Another possible complication would be the presence of shallow
creep (Wesson 1988). Shallow creep has been observed on sev-
eral major strike-slip faults including the North Anatolian Fault and
several strands of the San Andreas Fault System. No such creeping
segment has been identified on the Denali Fault, but since creep is
most often identified through the offset of man-made structures, in
the remote areas of Alaska through which the Denali Fault passes it
is possible that a creeping section of fault might remain unnoticed.
Creep near the surface would be easily observable as a sharp offset
in the interferograms (e.g. Burgmann et al. 1998), something which
we have not seen.

The errors associated with this technique of 5–6 mm yr−1 make it
suitable for measuring faults with rapid slip rates. However, in order
to study a wider range of faults including those with lower slip rates,
for example, less than 5 mm yr−1, the errors need to be further re-
duced. The dominant remaining source of error is atmospheric water
vapour. Ongoing attempts are being made to model and remove the
atmospheric contribution using GPS data (Li et al. 2005), satellite
water vapour measurements from instruments such as MODIS and

MERIS, (Li et al. 2006, 2005) and atmospheric models (Wadge
et al. 2002; Foster et al. 2006). However, the most effective method
at this stage is still the brute force approach of increasing the size of
the data set. The Denali Fault is at sufficiently high latitude that the
ground tracks overlap; six tracks cover the Delta River Valley. In the
future, newer satellites such as Radarsat and Envisat may produce
a higher density of acquisitions even at lower latitude by making
use of wide-swath and variable beam mode capabilities. A separate
rate map would need to be constructed for each track of data, but
these could then be combined into a single slip rate estimate before
iteration.

Atmospheric water vapour is often correlated with topography,
since the path length through the atmosphere will be reduced over
high mountains. Unfortunately, many major tectonic features cor-
respond to major topographic features, including the Denali Fault
which cuts through the Alaska Range. As a result it may be difficult
to separate the atmospheric contribution associated with topography
from the tectonic signal. A possible solution would be to use our
network approach and including a term for each acquisition which
is proportional to topography.

7.2 Comparison to previous slip rate estimates

Our estimate of interseismic slip rate on the Denali Fault of 10.5 ±
5.0 mm yr−1 is, to within error, compatible with previous estimates
from both geodetic (GPS) and geological sources giving confidence
that the method presented here works well for slip rates as low as
10 mm yr−1 and in areas of poor coherence. The InSAR result is
slightly higher than previous geodetic estimates based on GPS mea-
surements and is much closer to the geological estimate of 12.0 ±
1.7 mm yr−1 (Matmon et al. 2006). However, given the error bars
involved when using a single track of data, this comparison may
not be significant. By combining numerous tracks of data from both
ascending and descending passes, it should be possible to reduce
the error on the InSAR result down to 1–2 mm yr−1 allowing for a
more robust comparison.

In central Alaska the Denali Fault has often been approximated
by a small circle and is sometimes modelled as a rotating block
(Fletcher 2002; Freed et al. 2006). In this case, the slip rate along
the length of the Denali Fault would be expected to be constant.
However, this approach assumes that the Denali Fault is the only
active structure in the region. The study of Matmon et al. (2006)
suggests that the curvature of the Denali fault is responsible for a
westward decrease in slip rate and increase in shortening. Observa-
tions of seismicity during the period 1912–2002 show little activity
on the Denali Fault with the majority of significant earthquakes
occurring to the north or south of the Denali Fault with thrust mech-
anisms. In particular, the Northern Foothills is a 40-km wide zone of
thrust faulting located between the Parks Highway and Richardson
Highway. In this case, structures such as these could accommodate
a proportion of the tectonic stress and variations in slip rate along
the fault would be expected.

8 C O N C L U S I O N S

InSAR has the potential to produce continental-scale maps of fault
slip rate but our ability to measure slow, long wavelength deforma-
tion signals is currently limited by decorrelation (both temporal and
spatial), orbital errors and atmospheric errors. In order to reduce
the impact of these factors on our measurements, we propose a new
algorithm consisting of three stages: orbital error estimation, con-
struction of a rate map and estimation of the slip rate. Using tests
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on synthetic data, we find that despite significant levels of noise,
the method is capable of not only detecting interseismic signals,
but of accurately recovering the slip rate. We apply the method to a
single test track of data across the Denali Fault and find a slip rate
of 10.5 ± 5.0 mm yr−1; within the range of geological estimates,
but slightly larger than found using GPS (Fletcher 2002). It is worth
noting that this is just a preliminary result and analysis of data from
overlapping tracks on both ascending and descending paths and
from other satellites (e.g. Radarsat, JERS) should reduce the errors.
Furthermore, using data from multiple look directions should allow
us to distinguish between purely strike-slip motion and any vertical
component.
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